Two Classes of Optimal Few-Weight Codes Over Fq + uFq

被引:0
作者
Hu, Zhao [1 ]
Chen, Bing [1 ]
Li, Nian [1 ]
Zeng, Xiangyong [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
来源
ARITHMETIC OF FINITE FIELDS, WAIFI 2022 | 2023年 / 13638卷
基金
中国国家自然科学基金;
关键词
Optimal linear code; Few-weight code; Lee weight distribution; LINEAR CODES; CONSTRUCTION;
D O I
10.1007/978-3-031-22944-2_13
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we construct two families of linear codes over the ring F-q + uF(q) by the defining set approach, where q is a prime power and u(2) = 0. We completely determine their Lee weight distributions, which shows that these codes have few Lee weights. Via the Gray map, we obtain a family of near Griesmer codes over F-q, which is also distance-optimal, and a family of linear codes over F-q, whose optimality is characterized with an explicit computable criterion using the Griesmer bound.
引用
收藏
页码:208 / 220
页数:13
相关论文
共 17 条
[1]   How to Build Robust Shared Control Systems [J].
Anderson R. ;
Ding C. ;
Helleseth T. ;
Kløve T. .
Designs, Codes and Cryptography, 1998, 15 (2) :111-124
[2]  
CALDERBANK AR, 1984, PHILIPS J RES, V39, P143
[3]   Linear codes from perfect nonlinear mappings and their secret sharing schemes [J].
Carlet, C ;
Ding, CS ;
Yuan, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (06) :2089-2102
[4]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes
[5]   Linear codes from simplicial complexes [J].
Chang, Seunghwan ;
Hyun, Jong Yoon .
DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (10) :2167-2181
[6]   A coding theory construction of new systematic authentication codes [J].
Ding, CS ;
Wang, XS .
THEORETICAL COMPUTER SCIENCE, 2005, 330 (01) :81-99
[7]   Cyclotomic linear codes of order 3 [J].
Ding, Cunsheng ;
Niederreiter, Harald .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (06) :2274-2277
[8]   A generic construction of Cartesian authentication codes [J].
Ding, Cunsheng ;
Helleseth, Tor ;
Klove, Torleiv ;
Wang, Xuesong .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (06) :2229-2235
[9]  
Grassl M., Bounds on the minimum distance of linear codes and quantum codes
[10]   A BOUND FOR ERROR-CORRECTING CODES [J].
GRIESMER, JH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1960, 4 (05) :532-542