Label-Free Identification of Exosomes using Raman Spectroscopy and Machine Learning

被引:51
|
作者
Parlatan, Ugur [1 ,2 ]
Ozen, Mehmet Ozgun [2 ]
Kecoglu, Ibrahim [1 ]
Koyuncu, Batuhan [3 ]
Torun, Hulya [4 ,5 ]
Khalafkhany, Davod [6 ]
Loc, Irem [1 ]
Ogut, Mehmet Giray [2 ]
Inci, Fatih [7 ,8 ]
Akin, Demir [2 ]
Solaroglu, Ihsan [5 ,9 ]
Ozoren, Nesrin [6 ]
Unlu, Mehmet Burcin [1 ,10 ,11 ]
Demirci, Utkan [2 ]
机构
[1] Bogazici Univ, Dept Phys, TR-34342 Istanbul, Turkiye
[2] Stanford Sch Med, Canary Ctr, BioAcoust MEMS Med Lab BAMM, Dept Radiol,Stanford Canc Early Detect, Palo Alto, CA 94304 USA
[3] Bogazici Univ, Dept Comp Engn, TR-34342 Istanbul, Turkiye
[4] Koc Univ, Grad Sch Sci & Engn, TR-34450 Istanbul, Turkiye
[5] Koc Univ, Res Ctr Translat Med KUTTAM, TR-34450 Istanbul, Turkiye
[6] Bogazici Univ, Ctr Life Sci & Technol, Dept Mol Biol & Genet, Apoptosis & Canc Immunol Lab AKiL, TR-34342 Istanbul, Turkiye
[7] Bilkent Univ, Natl Nanotechnol Res Ctr, UNAM, TR-06800 Ankara, Turkiye
[8] Bilkent Univ, Inst Mat Sci & Nanotechnol, TR-06800 Ankara, Turkiye
[9] Koc Univ, Sch Med, TR-34450 Istanbul, Turkiye
[10] Hokkaido Univ, Fac Engn, North 13 West 8,Kita Ku, Sapporo, Hokkaido 0608628, Japan
[11] Hokkaido Univ, Fac Med, Global Ctr Biomed Sci & Engn Quantum, Med Sci & Engn GI CoRE Cooperating Hub, Sapporo 0608638, Japan
关键词
exosome; extracellular vesicles; neural networks; Raman spectroscopy; BREAST-CANCER; CELLS; CLASSIFICATION; SPECTRA; SERS; DISCRIMINATION; DIAGNOSIS;
D O I
10.1002/smll.202205519
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exosomes, nano-sized extracellular vesicles (EVs) secreted from cells, carry various cargo molecules reflecting their cells of origin. As EV content, structure, and size are highly heterogeneous, their classification via cargo molecules by determining their origin is challenging. Here, a method is presented combining surface-enhanced Raman spectroscopy (SERS) with machine learning algorithms to employ the classification of EVs derived from five different cell lines to reveal their cellular origins. Using an artificial neural network algorithm, it is shown that the label-free Raman spectroscopy method's prediction ratio correlates with the ratio of HT-1080 exosomes in the mixture. This machine learning-assisted SERS method enables a new direction through label-free investigation of EV preparations by differentiating cancer cell-derived exosomes from those of healthy. This approach will potentially open up new avenues of research for early detection and monitoring of various diseases, including cancer.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Raman spectroscopy for label-free identification of calciphylaxis
    Lloyd, William R.
    Agarwal, Shailesh
    Nigwekar, Sagar U.
    Esmonde-White, Karen
    Loder, Shawn
    Fagan, Shawn
    Goverman, Jeremy
    Olsen, Bjorn R.
    Jumlongras, Dolrudee
    Morris, Michael D.
    Levi, Benjamin
    JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (08)
  • [2] Machine learning approach for label-free rapid detection and identification of virus using Raman spectra
    Alexander, Rajath
    Uppal, Sheetal
    Dey, Anusree
    Kaushal, Amit
    Prakash, Jyoti
    Dasgupta, Kinshuk
    INTELLIGENT MEDICINE, 2023, 3 (01): : 22 - 35
  • [3] Rapid Identification of Biotherapeutics with Label-Free Raman Spectroscopy
    Paidi, Santosh Kumar
    Siddhanta, Soumik
    Strouse, Robert
    McGivney, James B.
    Larkin, Christopher
    Barman, Ishan
    ANALYTICAL CHEMISTRY, 2016, 88 (08) : 4361 - 4368
  • [4] Label-Free Identification of White Blood Cells Using Machine Learning
    Nassar, Mariam
    Doan, Minh
    Filby, Andrew
    Wolkenhauer, Olaf
    Fogg, Darin K.
    Piasecka, Justyna
    Thornton, Catherine A.
    Carpenter, Anne E.
    Summers, Huw D.
    Rees, Paul
    Hennig, Holger
    CYTOMETRY PART A, 2019, 95A (08) : 836 - 842
  • [5] Raman spectroscopy-based label-free cell identification using wavelet transform and support vector machine
    Bakhtiaridoost, S.
    Habibiyan, H.
    Muhammadnejad, S.
    Haddadi, M.
    Ghafoorifard, H.
    Arabalibeik, H.
    Amanpour, S.
    RSC ADVANCES, 2016, 6 (55): : 50027 - 50033
  • [6] Label-Free identification of fentanyl analogues using surface-enhanced Raman scattering and machine learning algorithm
    Chen, Mingjie
    Bai, Haohao
    Zhuo, Xiaocong
    Mo, Fan
    Yao, Sen
    Shi, Lu
    Qin, Yazhou
    He, Yingsheng
    VIBRATIONAL SPECTROSCOPY, 2023, 127
  • [7] Simultaneous isolation and label-free identification of bacteria using contactless dielectrophoresis and Raman spectroscopy
    Hanson, Cynthia
    Barney, Jacob T.
    Bishop, Morgan M.
    Vargis, Elizabeth
    ELECTROPHORESIS, 2019, 40 (10) : 1446 - 1456
  • [8] Feasibility Study of Label-Free Raman Spectroscopy for Parathyroid Gland Identification
    Wang, Hao
    Guo, Sisi
    Zhang, Ruoyu
    Yao, Jing
    Tian, Wen
    Wang, Jianfeng
    JOURNAL OF BIOPHOTONICS, 2025, 18 (01)
  • [9] Label-free identification of Erythropoietin isoforms by surface enhanced Raman spectroscopy
    Hassanain, Waleed A.
    Theiss, Frederick L.
    Izake, Emad L.
    TALANTA, 2022, 236
  • [10] Label-Free Characterization of Macrophage Polarization Using Raman Spectroscopy
    Naumann, Max
    Arend, Natalie
    Guliev, Rustam R.
    Kretzer, Christian
    Rubio, Ignacio
    Werz, Oliver
    Neugebauer, Ute
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (01)