Removable edges in Halin graphs

被引:0
作者
Wang, Yan [1 ]
Deng, Jiahong [1 ]
Lu, Fuliang [1 ]
机构
[1] Minnan Normal Univ, Sch Math & Stat, Zhangzhou, Peoples R China
关键词
Matching covered graph; Halin graph; Removable edge; EAR-DECOMPOSITIONS;
D O I
10.1016/j.dam.2024.01.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A connected nontrivial graph G is matching covered, if every edge of G is contained in a perfect matching of G. An edge e of a matching covered graph G is removable if G - e is still matching covered. Lovasz and Plummer introduced removable edges in connection with ear decompositions of matching covered graphs. By characterizing the structure of removable edges, we obtain that the number of removable edges of Halin graphs G with even number of vertices, other than K4, C6 and R8, is at least 41 (|V(G)| +2), and the lower bound is attainable. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 9 条
  • [1] Bondy J.A., 2008, Graph Theory
  • [2] Carvalho M.H., 2014, Electron. J. Combin., V21
  • [3] Ear decompositions of matching covered graphs
    Carvalho, MH
    Lucchesi, CL
    Murty, USR
    [J]. COMBINATORICA, 1999, 19 (02) : 151 - 174
  • [4] A generalization of Little's Theorem on Pfaffian orientations
    de Carvalho, Marcelo H.
    Lucchesi, Claudio L.
    Murty, U. S. R.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (06) : 1241 - 1266
  • [5] EAR-DECOMPOSITIONS OF MATCHING-COVERED GRAPHS
    LOVASZ, L
    [J]. COMBINATORICA, 1983, 3 (01) : 105 - 117
  • [6] Lovasz L., 1986, Matching theory
  • [7] Lu FL, 2024, Arxiv, DOI arXiv:2202.04279
  • [8] Syslo M.M., 1983, Lecture Notes in Math, V1018, P248
  • [9] A lower bound on the number of removable ears of 1-extendable graphs
    Zhai, Shaohui
    Lucchesi, Claudio L.
    Guo, Xiaofeng
    [J]. DISCRETE MATHEMATICS, 2010, 310 (05) : 1123 - 1126