Ascription of nosZ gene, pH and copper for mitigating N2O emissions in acidic soils

被引:4
|
作者
Shaaban, Muhammad [1 ]
Wang, Xiao-Ling [1 ]
Song, Peng [1 ]
Hou, Xiaogai [1 ]
Wu, Yupeng [2 ]
Hu, Ronggui [2 ]
机构
[1] Henan Univ Sci & Technol, Coll Agr, Luoyang 471023, Peoples R China
[2] Huazhong Agr Univ, Coll Resources & Environm, Wuhan, Peoples R China
关键词
Acidic soils; Soil pH management; nosZ gene; Nitrous oxide; Copper; Climate change; NITROUS-OXIDE EMISSION; DOLOMITE APPLICATION; MICROBIAL BIOMASS; DENITRIFICATION; ACIDIFICATION; AGRICULTURE; REDUCTION; MAGNITUDE; BACTERIA; IMPACT;
D O I
10.1016/j.envres.2023.117059
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil nitrous oxide (N2O) emissions are alarming for global warming and climate change. N2O reduction is carried out only by nosZ gene encoded N2O-reductase, which is highly sensitive to acidic pH and copper (Cu) contents. Therefore, a microcosm study was conducted to examine the attribution of soil pH management, Cu supply and nosZ gene abundance for N2O emission mitigation. Cu was applied at the dose of 0, 10, 25 and 50 mg kg  1 to three acidic soils (Soil 1, 2 and 3) without and with dolomite (0 and 5 g kg  1). Cu application and soil pH increment substantially enlarged the abundance of nosZ gene, and consequently mitigated soil N2O emissions; highest reduction with 25 Cu mg kg  1. Decline in NH4+ and subsequently accumulation of NO3 , and large contents of MBC and DOC in dolomite treated soils led to a substantial N2O reduction. The cumulative N2O emissions were lowest in the treatment of 25 Cu mg kg  1 with dolomite application for each soil. Results suggest that soil pH increment, an adequate Cu supply, and nosZ gene abundance can potentially lower soil N2O emissions in acidic soils.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The contributions of hydroxylamine and nitrite to NO and N2O production in alkaline and acidic vegetable soils
    Duan, Pengpeng
    Shen, Haojie
    Jiang, Xueyang
    Yan, Xiaoyuan
    Xiong, Zhengqin
    JOURNAL OF SOILS AND SEDIMENTS, 2020, 20 (07) : 2903 - 2911
  • [22] Phylogenetic and functional potential links pH and N2O emissions in pasture soils
    Samad, M. d. Sainur
    Biswas, Ambarish
    Bakken, Lars R.
    Clough, Timothy J.
    de Klein, Cecile A. M.
    Richards, Karl G.
    Lanigan, Gary J.
    Morales, Sergio E.
    SCIENTIFIC REPORTS, 2016, 6
  • [23] The effect of soil pH and dicyandiamide (DCD) on N2O emissions and ammonia oxidiser abundance in a stimulated grazed pasture soil
    Robinson, Aimee
    Di, Hong Jie
    Cameron, Keith C.
    Podolyan, Andriy
    He, Jizheng
    JOURNAL OF SOILS AND SEDIMENTS, 2014, 14 (08) : 1434 - 1444
  • [24] Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils
    Hansen, Mette
    Clough, Tim J.
    Elberling, Bo
    SOIL BIOLOGY & BIOCHEMISTRY, 2014, 69 : 17 - 24
  • [25] N2O and NO emissions by agricultural soils with low hydraulic potentials
    Garrido, F
    Hénault, C
    Gaillard, H
    Pérez, S
    Germon, JC
    SOIL BIOLOGY & BIOCHEMISTRY, 2002, 34 (05) : 559 - 575
  • [26] Using adaptive and aggressive N2O-reducing bacteria to augment digestate fertilizer for mitigating N2O emissions from agricultural soils
    Wang, Xinhui
    Xiang, Baoyu
    Li, Ji
    Zhang, Menghui
    Frostegard, Asa
    Bakken, Lars
    Zhang, Xiaojun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 903
  • [27] Carbon-iron coupling reduced N2O emissions via promoting the conversion to N2 in paddy soils
    Gan, Xuelian
    Zhao, Jing
    Fu, Qingling
    Zhu, Jun
    He, Huan
    Hu, Hongqing
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2023, 74 (04)
  • [28] Restoring effect of soil acidity and Cu on N2O emissions from an acidic soil
    Shaaban, Muhammad
    Peng, Qi-an
    Bashir, Saqib
    Wu, Yupeng
    Younas, Aneela
    Xu, Xiangyu
    Rashti, Mehran Razaei
    Abid, Muhammad
    Zafar-ul-Hye, Muhammad
    Nunez-Delgado, Avelino
    Horwath, William R.
    Jiang, Yanbin
    Lin, Shan
    Hu, Ronggui
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 250
  • [29] Low pH inhibits soil nosZ without affecting N2O uptake
    Xiangzhou Zheng
    Baoling Guo
    Hongshan Liu
    Yiqun Wu
    Juhua Yu
    Hong Ding
    Xiuhong Jiang
    Quanda Luo
    Yushu Zhang
    Journal of Soils and Sediments, 2023, 23 : 422 - 430
  • [30] Nitrous oxide (N2O)-reducing denitrifier-inoculated organic fertilizer mitigates N2O emissions from agricultural soils
    Gao, Nan
    Shen, Weishou
    Camargo, Estefania
    Shiratori, Yutaka
    Nishizawa, Tomoyasu
    Isobe, Kazuo
    He, Xinhua
    Senoo, Keishi
    BIOLOGY AND FERTILITY OF SOILS, 2017, 53 (08) : 885 - 898