DIGEST: DEEPLY SUPERVISED KNOWLEDGE TRANSFER NETWORK LEARNING FOR BRAIN TUMOR SEGMENTATION WITH INCOMPLETE MULTI-MODAL MRI SCANS

被引:0
作者
Li, Haoran [1 ,2 ]
Li, Cheng [1 ]
Huang, Weijian [1 ,2 ,3 ]
Zheng, Xiawu [3 ]
Xi, Yan [1 ]
Wang, Shanshan [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Peng Cheng Lab, Shenzhen, Guangdong, Peoples R China
[4] Guangdong Prov Key Lab Artificial Intelligence Me, Guangzhou, Guangdong, Peoples R China
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
基金
中国国家自然科学基金;
关键词
deep learning; brain tumor segmentation; MRI;
D O I
10.1109/ISBI53787.2023.10230344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain tumor segmentation based on multi-modal magnetic resonance imaging (MRI) plays a pivotal role in assisting brain cancer diagnosis, treatment, and postoperative evaluations. Despite the achieved inspiring performance by existing automatic segmentation methods, multi-modal MRI data are still unavailable in real-world clinical applications due to quite a few uncontrollable factors(e.g. different imaging protocols, data corruption, and patient condition limitations), which lead to a large performance drop during practical applications. In this work, we propose a Deeply supervIsed knowledGE tranSfer neTwork (DIGEST), which achieves accurate brain tumor segmentation under different modality-missing scenarios. Specifically, a knowledge transfer learning frame is constructed, enabling a student model to learn modality-shared semantic information from a teacher model pretrained with the complete multi-modal MRI data. To simulate all the possible modality-missing conditions under the given multi-modal data, we generate incomplete multimodal MRI samples based on Bernoulli sampling. Finally, a deeply supervised knowledge transfer loss is designed to ensure the consistency of the teacher-student structure at different decoding stages, which helps the extraction of inherent and effective modality representations. Experiments on the BraTS 2020 dataset demonstrate that our method achieves promising results for the incomplete multi-modal MR image segmentation task.
引用
收藏
页数:4
相关论文
共 15 条
[1]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[2]   Hetero-Modal Variational Encoder-Decoder for Joint Modality Completion and Segmentation [J].
Dorent, Reuben ;
Joutard, Samuel ;
Modat, Marc ;
Ourselin, Sebastien ;
Vercauteren, Tom .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :74-82
[3]  
Havaei Mohammad, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P469, DOI 10.1007/978-3-319-46723-8_54
[4]   Bag of Tricks for Image Classification with Convolutional Neural Networks [J].
He, Tong ;
Zhang, Zhi ;
Zhang, Hang ;
Zhang, Zhongyue ;
Xie, Junyuan ;
Li, Mu .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :558-567
[5]   Brain Tumor Segmentation with Self-ensembled, Deeply-Supervised 3D U-Net Neural Networks: A BraTS 2020 Challenge Solution [J].
Henry, Theophraste ;
Carre, Alexandre ;
Lerousseau, Marvin ;
Estienne, Theo ;
Robert, Charlotte ;
Paragios, Nikos ;
Deutsch, Eric .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 :327-339
[6]   MRI-Based Attenuation Correction for PET/MRI: A Novel Approach Combining Pattern Recognition and Atlas Registration [J].
Hofmann, Matthias ;
Steinke, Florian ;
Scheel, Verena ;
Charpiat, Guillaume ;
Farquhar, Jason ;
Aschoff, Philip ;
Brady, Michael ;
Schoelkopf, Bernhard ;
Pichler, Bernd J. .
JOURNAL OF NUCLEAR MEDICINE, 2008, 49 (11) :1875-1883
[7]   Random forest regression for magnetic resonance image synthesis [J].
Jog, Amod ;
Carass, Aaron ;
Roy, Snehashis ;
Pham, Dzung L. ;
Prince, Jerry L. .
MEDICAL IMAGE ANALYSIS, 2017, 35 :475-488
[8]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[9]   Why Does Synthesized Data Improve Multi-sequence Classification? [J].
van Tulder, Gijs ;
de Bruijne, Marleen .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT I, 2015, 9349 :531-538
[10]  
Wang LW, 2015, Arxiv, DOI [arXiv:1505.02496, DOI 10.48550/ARXIV.1505.02496]