Causality-Inspired Single-Source Domain Generalization for Medical Image Segmentation

被引:67
|
作者
Ouyang, Cheng [1 ]
Chen, Chen [1 ]
Li, Surui [1 ]
Li, Zeju [1 ]
Qin, Chen [2 ,3 ]
Bai, Wenjia [1 ,4 ]
Rueckert, Daniel [1 ,5 ]
机构
[1] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[3] Imperial Coll London, Imperial X, London SW7 2AZ, England
[4] Imperial Coll London, Dept Brain Sci, London SW7 2AZ, England
[5] Tech Univ Munich, Inst AI & Informat Med, Klinikum Rechts Isar, D-81675 Munich, Germany
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Image segmentation; Training; Biomedical imaging; Correlation; Robustness; Data models; Training data; Domain generalization; image segmentation; causality; data augmentation;
D O I
10.1109/TMI.2022.3224067
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning models usually suffer from the domain shift issue, where models trained on one source domain do not generalize well to other unseen domains. In this work, we investigate the single-source domain generalization problem: training a deep network that is robust to unseen domains, under the condition that training data are only available from one source domain, which is common in medical imaging applications. We tackle this problem in the context of cross-domain medical image segmentation. In this scenario, domain shifts are mainly caused by different acquisition processes. We propose a simple causality-inspired data augmentation approach to expose a segmentation model to synthesized domain-shifted training examples. Specifically, 1) to make the deep model robust to discrepancies in image intensities and textures, we employ a family of randomly-weighted shallow networks. They augment training images using diverse appearance transformations. 2) Further we show that spurious correlations among objects in an image are detrimental to domain robustness. These correlations might be taken by the network as domain-specific clues for making predictions, and they may break on unseen domains. We remove these spurious correlations via causal intervention. This is achieved by resampling the appearances of potentially correlated objects independently. The proposed approach is validated on three cross-domain segmentation scenarios: cross-modality (CT-MRI) abdominal image segmentation, cross-sequence (bSSFP-LGE) cardiac MRI segmentation, and cross-site prostate MRI segmentation. The proposed approach yields consistent performance gains compared with competitive methods when tested on unseen domains.
引用
收藏
页码:1095 / 1106
页数:12
相关论文
共 50 条
  • [31] A Novel 3D Unsupervised Domain Adaptation Framework for Cross-Modality Medical Image Segmentation
    Yao, Kai
    Su, Zixian
    Huang, Kaizhu
    Yang, Xi
    Sun, Jie
    Hussain, Amir
    Coenen, Frans
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (10) : 4976 - 4986
  • [32] UPL-SFDA: Uncertainty-Aware Pseudo Label Guided Source-Free Domain Adaptation for Medical Image Segmentation
    Wu, Jianghao
    Wang, Guotai
    Gu, Ran
    Lu, Tao
    Chen, Yinan
    Zhu, Wentao
    Vercauteren, Tom
    Ourselin, Sebastien
    Zhang, Shaoting
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (12) : 3932 - 3943
  • [33] Disentangled Representation for Cross-Domain Medical Image Segmentation
    Wang, Jie
    Zhong, Chaoliang
    Feng, Cheng
    Zhang, Ying
    Sun, Jun
    Yokota, Yasuto
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [34] CAT-DG: A Cross-Attention-Based Domain Generalization Model for Medical Image Segmentation
    Gao, Wenhui
    Shi, Yilun
    Yu, Lei
    Xu, Qiaozhi
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VI, ICIC 2024, 2024, 14867 : 169 - 180
  • [35] AADG: Automatic Augmentation for Domain Generalization on Retinal Image Segmentation
    Lyu, Junyan
    Zhang, Yiqi
    Huang, Yijin
    Lin, Li
    Cheng, Pujin
    Tang, Xiaoying
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (12) : 3699 - 3711
  • [36] Segmentation Consistency Training: Out-of-Distribution Generalization for Medical Image Segmentation
    Torpmann-Hagen, Birk
    Thambawita, Vajira
    Riegler, Michael A.
    Halvorsen, Pal
    Glette, Kyrre
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2022, : 42 - 49
  • [37] Unpaired Dual-Modal Image Complementation Learning for Single-Modal Medical Image Segmentation
    Xiang, Dehui
    Peng, Tao
    Bian, Yun
    Chen, Lang
    Zeng, Jianbin
    Shi, Fei
    Zhu, Weifang
    Chen, Xinjian
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2025, 72 (02) : 664 - 674
  • [38] Better Pseudo-Labeling for Semi-Supervised Domain Generalization in Medical Magnetic Resonance Image Segmentation
    Hu, Liangqing
    Meng, Zuqiang
    Tan, Chaohong
    Zhou, Yumin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2025, 18 (01)
  • [39] Black-Box Unsupervised Domain Adaptation for Medical Image Segmentation
    Kondo, Satoshi
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, DART 2023, 2024, 14293 : 22 - 30
  • [40] DOMINO: Domain-Aware Model Calibration in Medical Image Segmentation
    Stolte, Skylar E.
    Volle, Kyle
    Indahlastari, Aprinda
    Albizu, Alejandro
    Woods, Adam J.
    Brink, Kevin
    Hale, Matthew
    Fang, Ruogu
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 : 454 - 463