Causality-Inspired Single-Source Domain Generalization for Medical Image Segmentation

被引:65
|
作者
Ouyang, Cheng [1 ]
Chen, Chen [1 ]
Li, Surui [1 ]
Li, Zeju [1 ]
Qin, Chen [2 ,3 ]
Bai, Wenjia [1 ,4 ]
Rueckert, Daniel [1 ,5 ]
机构
[1] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[3] Imperial Coll London, Imperial X, London SW7 2AZ, England
[4] Imperial Coll London, Dept Brain Sci, London SW7 2AZ, England
[5] Tech Univ Munich, Inst AI & Informat Med, Klinikum Rechts Isar, D-81675 Munich, Germany
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Image segmentation; Training; Biomedical imaging; Correlation; Robustness; Data models; Training data; Domain generalization; image segmentation; causality; data augmentation;
D O I
10.1109/TMI.2022.3224067
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning models usually suffer from the domain shift issue, where models trained on one source domain do not generalize well to other unseen domains. In this work, we investigate the single-source domain generalization problem: training a deep network that is robust to unseen domains, under the condition that training data are only available from one source domain, which is common in medical imaging applications. We tackle this problem in the context of cross-domain medical image segmentation. In this scenario, domain shifts are mainly caused by different acquisition processes. We propose a simple causality-inspired data augmentation approach to expose a segmentation model to synthesized domain-shifted training examples. Specifically, 1) to make the deep model robust to discrepancies in image intensities and textures, we employ a family of randomly-weighted shallow networks. They augment training images using diverse appearance transformations. 2) Further we show that spurious correlations among objects in an image are detrimental to domain robustness. These correlations might be taken by the network as domain-specific clues for making predictions, and they may break on unseen domains. We remove these spurious correlations via causal intervention. This is achieved by resampling the appearances of potentially correlated objects independently. The proposed approach is validated on three cross-domain segmentation scenarios: cross-modality (CT-MRI) abdominal image segmentation, cross-sequence (bSSFP-LGE) cardiac MRI segmentation, and cross-site prostate MRI segmentation. The proposed approach yields consistent performance gains compared with competitive methods when tested on unseen domains.
引用
收藏
页码:1095 / 1106
页数:12
相关论文
共 50 条
  • [1] Causality-inspired Domain Expansion network for single domain generalization
    Yang, Shuai
    Zhang, Zhen
    Gu, Lichuan
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [2] Frequency-Mixed Single-Source Domain Generalization for Medical Image Segmentation
    Li, Heng
    Li, Haojin
    Zhao, Wei
    Fu, Huazhu
    Su, Xiuyun
    Hu, Yan
    Liu, Jiang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VI, 2023, 14225 : 127 - 136
  • [3] Rethinking Data Augmentation for Single-Source Domain Generalization in Medical Image Segmentation
    Su, Zixian
    Yao, Kai
    Yang, Xi
    Huang, Kaizhu
    Wang, Qiufeng
    Sun, Jie
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 2366 - 2374
  • [4] Medical Image Segmentation via Single-Source Domain Generalization with Random Amplitude Spectrum Synthesis
    Qiao, Qiang
    Wang, Wenyu
    Qu, Meixia
    Su, Kun
    Jiang, Bin
    Guo, Qiang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IX, 2024, 15009 : 435 - 445
  • [5] CauSSL: Causality-inspired Semi-supervised Learning for Medical Image Segmentation
    Miao, Juzheng
    Chen, Cheng
    Liu, Furui
    Wei, Hao
    Heng, Pheng-Ann
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21369 - 21380
  • [6] Causality-inspired multi-source domain generalization method for intelligent fault diagnosis under unknown operating conditions
    Ma, Hongbo
    Wei, Jiacheng
    Zhang, Guowei
    Kong, Xianguang
    Du, Jingli
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 252
  • [7] Single-source Domain Generalization in Deep Learning Segmentation via Lipschitz Regularization
    Arslan, Mazlum Ferhat
    Guo, Weihong
    Li, Shuo
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT X, 2024, 15010 : 666 - 674
  • [8] CauDR: A causality-inspired domain generalization framework for fundus-based diabetic retinopathy grading
    Wei H.
    Shi P.
    Miao J.
    Zhang M.
    Bai G.
    Qiu J.
    Liu F.
    Yuan W.
    Computers in Biology and Medicine, 2024, 175
  • [9] Adversarial Consistency for Single Domain Generalization in Medical Image Segmentation
    Xu, Yanwu
    Xie, Shaoan
    Reynolds, Maxwell
    Ragoza, Matthew
    Gong, Mingming
    Batmanghelich, Kayhan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VII, 2022, 13437 : 671 - 681
  • [10] Disentanglement-inspired single-source domain-generalization network for cross-scene hyperspectral image classification
    Peng, Danyang
    Wu, Jun
    Han, Tingting
    Li, Yuanyuan
    Wen, Yi
    Yang, Guangyu
    Qu, Lei
    KNOWLEDGE-BASED SYSTEMS, 2024, 303