Ionospheric TEC prediction using hybrid method based on ensemble empirical mode decomposition (EEMD) and long short-term memory (LSTM) deep learning model over India

被引:16
作者
Nath, S. [1 ]
Chetia, B. [2 ]
Kalita, S. [1 ]
机构
[1] Mahapurusha Srimanta Sankaradeva Viswavidyalaya, Dept Comp Applicat, Nagaon, Assam, India
[2] Royal Global Univ, Dept Phys, Gauhati, Assam, India
基金
美国海洋和大气管理局;
关键词
Ionosphere; Total Electron Content; EEMD; LSTM; GPS; NEURAL-NETWORKS;
D O I
10.1016/j.asr.2022.10.067
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Total electron data (TEC) from GPS nowadays can be used as a tool for understanding the space weather phenomena. The devel-opment of prediction model for TEC is quiet crucial and challenging due to the dynamic behavior of the ionosphere, since it depends on different factors such as seasonal, diurnal and spatial variations, solar geomagnetic conditions etc. In this paper, an attempt is made for predicting the GPS derived TEC values for different GNSS stations over India using a hybrid method based on Ensemble empirical mode decomposition (EEMD) and Long Short-Term Memory (LSTM) deep learning method. The daily TEC time series data from the IISc Bangalore (Latitude 13.021, Longitude 77.570), Lucknow (Latitude 26.912, Longitude 80.956) and Hyderabad (Latitude 17.417, Longitude 78.551) stations over India during the period 2008 to 2015 of solar cycle 23 and 24 is used for analysis. The assessment of model performance for testing predicted output compared with LSTM and EMD-LSTM models, and their comparison results show that the hybrid EEMD-LSTM model presents better than the other models.(c) 2022 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2307 / 2317
页数:11
相关论文
共 35 条
[1]   Forecasting of ionospheric critical frequency using neural networks [J].
Altinay, O ;
Tulunay, E ;
Tulunay, Y .
GEOPHYSICAL RESEARCH LETTERS, 1997, 24 (12) :1467-1470
[2]   A neural network-based foF2 model for a single station in the polar cap [J].
Athieno, R. ;
Jayachandran, P. T. ;
Themens, D. R. .
RADIO SCIENCE, 2017, 52 (06) :784-796
[3]   An Overview of Ionosphere-Thermosphere Models Available for Space Weather Purposes [J].
Belehaki, A. ;
Stanislawska, I. ;
Lilensten, J. .
SPACE SCIENCE REVIEWS, 2009, 147 (3-4) :271-313
[4]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166
[5]  
Bent Rodney B., 1975, Effect of the ionosphere on space systems and communications, V1, P13
[6]   International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions [J].
Bilitza, D. ;
Altadill, D. ;
Truhlik, V. ;
Shubin, V. ;
Galkin, I. ;
Reinisch, B. ;
Huang, X. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2017, 15 (02) :418-429
[7]   International Reference Ionosphere 2000 [J].
Bilitza, D .
RADIO SCIENCE, 2001, 36 (02) :261-275
[8]   Comparative Analysis of Recurrent Neural Networks in Stock Price Prediction for Different Frequency Domains [J].
Dey, Polash ;
Hossain, Emam ;
Hossain, Md. Ishtiaque ;
Chowdhury, Mohammed Armanuzzaman ;
Alam, Md. Shariful ;
Hossain, Mohammad Shahadat ;
Andersson, Karl .
ALGORITHMS, 2021, 14 (08)
[9]   A global model: Empirical orthogonal function analysis of total electron content 1999-2009 data [J].
Ercha, A. ;
Zhang, Donghe ;
Ridley, Aaron J. ;
Xiao, Zuo ;
Hao, Yongqiang .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
[10]   A Short-Term Forecast Model of foF2 Based on Elman Neural Network [J].
Fan, Jieqing ;
Liu, Chao ;
Lv, Yajing ;
Han, Jing ;
Wang, Jian .
APPLIED SCIENCES-BASEL, 2019, 9 (14)