Population-Based Prognostic Models for Head and Neck Cancers Using National Cancer Registry Data from Taiwan

被引:0
作者
Tsai, Yu-Lun [1 ,2 ]
Kang, Yi-Ting [1 ]
Chan, Han-Ching [1 ]
Chattopadhyay, Amrita [3 ]
Chiang, Chun-Ju [1 ,4 ]
Lee, Wen-Chung [1 ,4 ,5 ]
Cheng, Skye Hung-Chun [6 ,7 ]
Lu, Tzu-Pin [1 ,3 ,5 ]
机构
[1] Natl Taiwan Univ, Inst Epidemiol & Prevent Med, Coll Publ Hlth, Taipei, Taiwan
[2] Cathay Gen Hosp, Dept Radiat Oncol, Taipei, Taiwan
[3] Natl Taiwan Univ, Ctr Genom & Precis Med, Bioinformat & Biostat Core, Taipei, Taiwan
[4] Taiwan Canc Registry, Taipei, Taiwan
[5] Natl Taiwan Univ, Inst Hlth Data Analyt & Stat, Coll Publ Hlth, Taipei, Taiwan
[6] Sun Yat Sen Canc Ctr, Koo Fdn, Dept Radiat Oncol, Taipei, Taiwan
[7] Taitung Christian Hosp, Taitung, Taiwan
关键词
Prognostic model; Head and neck cancer; Asian; Taiwan Cancer Registry; SURVIVAL MODEL;
D O I
10.1007/s44197-024-00196-7
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Purpose This study aims to raise awareness of the disparities in survival predictions among races in head and neck cancer (HNC) patients by developing and validating population-based prognostic models specifically tailored for Taiwanese and Asian populations. Methods A total of 49,137 patients diagnosed with HNCs were included from the Taiwan Cancer Registry (TCR). Six prognostic models, divided into three categories based on surgical status, were developed to predict both overall survival (OS) and cancer-specific survival using the registered demographic and clinicopathological characteristics in the Cox proportional hazards model. The prognostic models underwent internal evaluation through a tenfold cross-validation among the TCR Taiwanese datasets and external validation across three primary racial populations using the Surveillance, Epidemiology, and End Results database. Predictive performance was assessed using discrimination analysis employing Harrell's c-index and calibration analysis with proportion tests. Results The TCR training and testing datasets demonstrated stable and favorable predictive performance, with all Harrell's c-index values >= 0.7 and almost all differences in proportion between the predicted and observed mortality being < 5%. In external validation, Asians exhibited the best performance compared with white and black populations, particularly in predicting OS, with all Harrell's c-index values > 0.7. Conclusions Survival predictive disparities exist among different racial groups in HNCs. We have developed population-based prognostic models for Asians that can enhance clinical practice and treatment plans.
引用
收藏
页码:433 / 443
页数:11
相关论文
共 35 条
[1]   Prediction models applying machine learning to oral cavity cancer outcomes: A systematic review [J].
Adeoye, John ;
Tan, Jia Yan ;
Choi, Siu-Wai ;
Thomson, Peter .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 154
[2]   Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review [J].
Alabi, Rasheed Omobolaji ;
Youssef, Omar ;
Pirinen, Matti ;
Elmusrati, Mohammed ;
Makitie, Antti A. ;
Leivo, Ilmo ;
Almangush, Alhadi .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 115
[3]   Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries [J].
Allemani, Claudia ;
Matsuda, Tomohiro ;
Di Carlo, Veronica ;
Harewood, Rhea ;
Matz, Melissa ;
Niksic, Maja ;
Bonaventure, Audrey ;
Valkov, Mikhail ;
Johnson, Christopher J. ;
Esteve, Jacques ;
Ogunbiyi, Olufemi J. ;
Azevedo e Silva, Gulnar ;
Chen, Wan-Qing ;
Eser, Sultan ;
Engholm, Gerda ;
Stiller, Charles A. ;
Monnereau, Alain ;
Woods, Ryan R. ;
Visser, Otto ;
Lim, Gek Hsiang ;
Aitken, Joanne ;
Weir, Hannah K. ;
Coleman, Michel P. .
LANCET, 2018, 391 (10125) :1023-1075
[4]  
[Anonymous], 2000, International Classification of Diseases for Oncology, VThird
[5]   Development and Assessment of a Model for Predicting Individualized Outcomes in Patients With Oropharyngeal Cancer [J].
Beesley, Lauren J. ;
Shuman, Andrew G. ;
Mierzwa, Michelle L. ;
Bellile, Emily L. ;
Rosen, Benjamin S. ;
Casper, Keith A. ;
Ibrahim, Mohannad ;
Dermody, Sarah M. ;
Wolf, Gregory T. ;
Chinn, Steven B. ;
Spector, Matthew E. ;
de Jong, Robert J. Baatenburg ;
Dronkers, Emilie A. C. ;
Taylor, Jeremy M. G. .
JAMA NETWORK OPEN, 2021, 4 (08) :E2120055
[6]   An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation [J].
Candido dos Reis, Francisco J. ;
Wishart, Gordon C. ;
Dicks, Ed M. ;
Greenberg, David ;
Rashbass, Jem ;
Schmidt, Marjanka K. ;
van den Broek, Alexandra J. ;
Ellis, Ian O. ;
Green, Andrew ;
Rakha, Emad ;
Maishman, Tom ;
Eccles, Diana M. ;
Pharoah, Paul D. P. .
BREAST CANCER RESEARCH, 2017, 19
[7]   Predicting Colon Cancer-Specific Survival for the Asian Population Using National Cancer Registry Data from Taiwan [J].
Chan, Han-Ching ;
Huang, Chi-Cheng ;
Huang, Ching-Chieh ;
Chattopadhyay, Amrita ;
Yeh, Kuan-Hung ;
Lee, Wen-Chung ;
Chiang, Chun-Ju ;
Lee, Hsin-Ying ;
Cheng, Skye Hung-Chun ;
Lu, Tzu-Pin .
ANNALS OF SURGICAL ONCOLOGY, 2022, 29 (02) :853-863
[8]   Taiwan's Nationwide Cancer Registry System of 40 years: Past, present, and future [J].
Chiang, Chun-Ju ;
Wang, Ying-Wei ;
Lee, Wen-Chung .
JOURNAL OF THE FORMOSAN MEDICAL ASSOCIATION, 2019, 118 (05) :856-858
[9]   Quality assessment and improvement of nationwide cancer registration system in Taiwan: a review [J].
Chiang, Chun-Ju ;
You, San-Lin ;
Chen, Chien-Jen ;
Yang, Ya-Wen ;
Lo, Wei-Cheng ;
Lai, Mei-Shu .
JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 2015, 45 (03) :291-296
[10]   Head and Neck Cancer [J].
Chow, Laura Q. M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (01) :60-72