PURITY IN CHROMATICALLY LOCALIZED ALGEBRAIC K-THEORY

被引:9
作者
Land, Markus [1 ]
Mathew, Akhil [2 ]
Meier, Lennart [3 ]
Tamme, Georg [4 ]
机构
[1] Ludwig Maximilians Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[2] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
[3] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
[4] Johannes Gutenberg Univ Mainz, Inst Math, Fachbereich 08, D-55099 Mainz, Germany
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
TOPOLOGICAL CYCLIC HOMOLOGY; MOTIVIC COHOMOLOGY; CYCLOTOMIC TRACE; STABLE-HOMOTOPY; SEQUENCES; SPECTRA;
D O I
10.1090/jams/1043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a purity property in telescopically localized algebraic K-theory of ring spectra: For n ≥ 1, the T(n)-localization of K(R) only depends on the (Formula Presented)-localization of R. This complements a classical result of Waldhausen in rational K-theory. Combining our result with work of Clausen–Mathew–Naumann–Noel, one finds that LT(n) K(R) in fact only depends on the (Formula Presented)-localization of R, again for n ≥ 1. As consequences, we deduce several vanishing results for telescopically localized K-theory, as well as an equivalence between K(R) and TC(T≥0)R after T(n)-localization for n≥2. © 2024, Centre d'Etudes Mongoles et Siberiennes. All rights reserved.
引用
收藏
页码:1011 / 1040
页数:30
相关论文
共 85 条
[1]  
Adams J. F., 1972, LONDON MATH SOC LECT, V4
[2]  
Angelini-Knoll G., 2020, ARXIV
[3]  
Angelini-Knoll G., 2019, ARXIV
[4]  
[Anonymous], 1990, The Grothendieck Festschrift
[5]   K-theoretic obstructions to bounded t-structures [J].
Antieau, Benjamin ;
Gepner, David ;
Heller, Jeremiah .
INVENTIONES MATHEMATICAE, 2019, 216 (01) :241-300
[6]   On localization sequences in the algebraic K-theory of ring spectra [J].
Antieau, Benjamin ;
Barthel, Tobias ;
Gepner, David .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (02) :459-487
[7]   A simple universal property of Thom ring spectra [J].
Antolin-Camarena, Omar ;
Barthel, Tobias .
JOURNAL OF TOPOLOGY, 2019, 12 (01) :56-78
[8]   Algebraic K-theory of topological K-theory [J].
Ausoni, C ;
Rognes, J .
ACTA MATHEMATICA, 2002, 188 (01) :1-39
[9]   THE CHROMATIC RED-SHIFT IN ALGEBRAIC K-THEORY [J].
Ausoni, Christian ;
Rognes, John .
ENSEIGNEMENT MATHEMATIQUE, 2008, 54 (1-2) :13-15
[10]   Algebraic K -theory of the first Morava K -theory [J].
Ausoni, Christian ;
Rognes, John .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (04) :1041-1079