LONG-TIME BEHAVIOUR OF AN ADVECTION-SELECTION EQUATION

被引:0
作者
Guilberteau, Jules [1 ]
Pouchol, Camille [2 ]
Duteil, Nastassia Pouradier [3 ]
机构
[1] Univ Paris Cite, Univ Paris C, CNRS, Inria,Lab Jacques Louis Lions LJLL, F-75005 Paris, France
[2] Univ Paris Cite, CNRS, UMR 8145, FR 2036,MAP5,FP2M, F-75006 Paris, France
[3] Sorbonne Univ, Univ Paris Cite, Inria, CNRS,Lab Jacques Louis Lions LJLL, F-75005 Paris, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 07期
关键词
Advection-selection equation; asymptotic behaviour; adaptive dynamics; structured partial differential equation; concentration phenomena; INDIVIDUAL STOCHASTIC-PROCESSES; CANCER-CELL POPULATIONS; DIFFERENTIAL-EQUATIONS; DYNAMICS; MODELS; STRATEGIES; SYSTEMS; GROWTH;
D O I
10.3934/dcdsb.2023214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behaviour of the advection-selection equation partial derivative(t)n(t, x)+del center dot (f(x)n(t,x)) = (r(x) - rho(t))n(t,x), t >= 0, x is an element of R-d, with rho(t)=integral(R)d n(t,x)dx an initial condition n(0. center dot) = n(0). In the field of adaptive dynamics, this equation typically describes the evolution of a phenotype-structured population over time. In this case, x bar right arrow n(t, x) represents the density of the population characterised by a phenotypic trait x, the advection term del center dot (f(x)n(t,x)) a cell differentiation phenomenon driving the individuals toward specific regions, and the selection term (r(x) - rho(t))n(t,x) the growth of the population, which is of logistic type through the total population size rho(t)=integral(Rd) n(t,x)dx. In the one-dimensional case x is an element of R, we prove that the solution to this equation can either converge to a weighted Dirac mass or to a function in L-1. Depending on the parameters n(0), f and r, we determine which of these two regimes of convergence occurs, and we specify the weight and the point where the Dirac mass is supported, or the expression of the L-1-function which is reached.
引用
收藏
页码:3097 / 3136
页数:40
相关论文
共 29 条
  • [1] EVOLUTION OF CANCER CELL POPULATIONS UNDER CYTOTOXIC THERAPY AND TREATMENT OPTIMISATION: INSIGHT FROM A PHENOTYPE-STRUCTURED MODEL
    Almeida, Luis
    Bagnerini, Patrizia
    Fabrini, Giulia
    Hughes, Barry D.
    Lorenzi, Tommaso
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (04): : 1157 - 1190
  • [2] CONCENTRATION PHENOMEN IN SOME NON-LOCAL EQUATION
    Bonnefon, Olivier
    Coville, Jerome
    Legendre, Guillaume
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (03): : 763 - 781
  • [3] Unifying evolutionary dynamics:: From individual stochastic processes to macroscopic models
    Champagnat, N
    Ferrière, R
    Méléard, S
    [J]. THEORETICAL POPULATION BIOLOGY, 2006, 69 (03) : 297 - 321
  • [4] FROM INDIVIDUAL STOCHASTIC PROCESSES TO MACROSCOPIC MODELS IN ADAPTIVE EVOLUTION
    Champagnat, Nicolas
    Ferriere, Regis
    Meleard, Sylvie
    [J]. STOCHASTIC MODELS, 2008, 24 : 2 - 44
  • [5] EFFECTS OF AN ADVECTION TERM IN NONLOCAL LOTKA-VOLTERRA EQUATIONS
    Chisholm, Rebecca H.
    Lorenzi, Tommaso
    Lorz, Alexander
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (04) : 1181 - 1188
  • [6] Emergence of Drug Tolerance in Cancer Cell Populations: An Evolutionary Outcome of Selection, Nongenetic Instability, and Stress-Induced Adaptation
    Chisholm, Rebecca H.
    Lorenzi, Tommaso
    Lorz, Alexander
    Larsen, Annette K.
    de Almeida, Luis Neves
    Escargueil, Alexandre
    Clairambault, Jean
    [J]. CANCER RESEARCH, 2015, 75 (06) : 930 - 939
  • [7] ON SELECTION DYNAMICS FOR CONTINUOUS STRUCTURED POPULATIONS
    Desvillettes, Laurent
    Jabin, Pierre-Emmanuel
    Mischler, Stephane
    Raoul, Gael
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2008, 6 (03) : 729 - 747
  • [8] The dynamical theory of coevolution: A derivation from stochastic ecological processes
    Dieckmann, U
    Law, R
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 34 (5-6) : 579 - 612
  • [9] ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES
    DIPERNA, RJ
    LIONS, PL
    [J]. INVENTIONES MATHEMATICAE, 1989, 98 (03) : 511 - 547
  • [10] Construction of a genetic toggle switch in Escherichia coli
    Gardner, TS
    Cantor, CR
    Collins, JJ
    [J]. NATURE, 2000, 403 (6767) : 339 - 342