3D Mask-Based Shape Loss Function for LIDAR Data for Improved 3D Object Detection

被引:0
作者
Park, R. [1 ]
Lee, C. [1 ]
机构
[1] Yonsei Univ, Dept Elect & Elect Engn, Seoul, South Korea
来源
PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS, VEHITS 2023 | 2023年
基金
新加坡国家研究基金会;
关键词
LIDAR; 3D Modelling; Shape Loss; Objection Detection; Autonomous Driving; Adaptive Ground ROI Estimation;
D O I
10.5220/0011966800003479
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a 3D shape loss function for improved 3D object detection for LIDAR data. As the LiDAR (Light Detection And Ranging) sensor plays a key role in many autonomous driving techniques, 3D object detection using LiDAR data has become an important issue. Due to inaccurate height estimation, 3D object detection methods using LiDAR data produce false positive errors. We propose a new 3D shape loss function based on 3D masks for improved performance. To accurately estimate ground ROI areas, we first apply an adaptive ground ROI estimation method to accurately estimate ground ROIs and then use the shape loss function to reduce false positive errors. Experimental shows some promising results.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 50 条
[41]   HYDRO-3D: Hybrid Object Detection and Tracking for Cooperative Perception Using 3D LiDAR [J].
Meng, Zonglin ;
Xia, Xin ;
Xu, Runsheng ;
Liu, Wei ;
Ma, Jiaqi .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (08) :4069-4080
[42]   Adaptive Fusion of LiDAR Features for 3D Object Detection in Autonomous Driving [J].
Wang, Mingrui ;
Li, Dongjie ;
Casas, Josep R. ;
Ruiz-Hidalgo, Javier .
SENSORS, 2025, 25 (13)
[43]   Unsupervised Subcategory Domain Adaptive Network for 3D Object Detection in LiDAR [J].
Wang, Zhiyu ;
Wang, Li ;
Xiao, Liang ;
Dai, Bin .
ELECTRONICS, 2021, 10 (08)
[44]   3D vision object detection for autonomous driving in fog using LiDaR [J].
Tahir, Alishba ;
Mumtaz, Rafia ;
Irshad, Muhammad Saqib .
SIMULATION MODELLING PRACTICE AND THEORY, 2025, 140
[45]   BEV Space 3D Object Detection Algorithm Based on Fusion of Infrared Camera and LiDAR [J].
Wang Wuyue ;
Xu Zhaofei ;
Qu Chunyan ;
Lin Ying ;
Chen Yufeng ;
Liao Jian .
ACTA PHOTONICA SINICA, 2024, 53 (01)
[46]   A Survey on Deep-Learning-Based LiDAR 3D Object Detection for Autonomous Driving [J].
Alaba, Simegnew Yihunie ;
Ball, John E. .
SENSORS, 2022, 22 (24)
[47]   KPP3D:Key Point Painting for 3D Object Detection [J].
Wang, Mingming ;
Chen, Qingkui ;
Fu, Zhibing .
Computer Engineering and Applications, 2023, 59 (17) :195-204
[48]   3D Graph Segmentation for Target Detection in FOPEN LiDAR Data [J].
Shorter, Nicholas ;
Locke, Judson ;
Smith, O'Neil ;
Keating, Emma ;
Smith, Philip .
LASER RADAR TECHNOLOGY AND APPLICATIONS XVIII, 2013, 8731
[49]   Automated Detection of 3D Roof Planes from Lidar Data [J].
Nusret Demir .
Journal of the Indian Society of Remote Sensing, 2018, 46 :1265-1272
[50]   Automated Detection of 3D Roof Planes from Lidar Data [J].
Demir, Nusret .
JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (08) :1265-1272