3D Mask-Based Shape Loss Function for LIDAR Data for Improved 3D Object Detection

被引:0
作者
Park, R. [1 ]
Lee, C. [1 ]
机构
[1] Yonsei Univ, Dept Elect & Elect Engn, Seoul, South Korea
来源
PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS, VEHITS 2023 | 2023年
基金
新加坡国家研究基金会;
关键词
LIDAR; 3D Modelling; Shape Loss; Objection Detection; Autonomous Driving; Adaptive Ground ROI Estimation;
D O I
10.5220/0011966800003479
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a 3D shape loss function for improved 3D object detection for LIDAR data. As the LiDAR (Light Detection And Ranging) sensor plays a key role in many autonomous driving techniques, 3D object detection using LiDAR data has become an important issue. Due to inaccurate height estimation, 3D object detection methods using LiDAR data produce false positive errors. We propose a new 3D shape loss function based on 3D masks for improved performance. To accurately estimate ground ROI areas, we first apply an adaptive ground ROI estimation method to accurately estimate ground ROIs and then use the shape loss function to reduce false positive errors. Experimental shows some promising results.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 50 条
[21]   3D Flash LiDAR Object Detection and Tracking on Edge Hardware [J].
Lompado, Art ;
Carvalho, Daniel R. M. ;
Brown, Jarrod P. .
IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE, NAECON 2024, 2024, :25-29
[22]   3D MSSD: A multilayer spatial structure 3D object detection network for mobile LiDAR point clouds [J].
Wang, Zongyue ;
Xia, Qiming ;
Du, Jing ;
Huang, Shangfeng ;
Su, Jinhe ;
Marcato Junior, Jose ;
Li, Jonathan ;
Cai, Guorong .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
[23]   Semantic Frustum Based VoxelNet for 3D Object Detection [J].
Chen, Feng ;
Wu, Fei ;
Huang, Qinghua ;
Feng, Yujian ;
Ge, Qi ;
Ji, Yimu ;
Hu, Chang-Hui ;
Jing, Xiao-Yuan .
2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, :7629-7634
[24]   Super Sparse 3D Object Detection [J].
Fan, Lue ;
Yang, Yuxue ;
Wang, Feng ;
Wang, Naiyan ;
Zhang, Zhaoxiang .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) :12490-12505
[25]   Aerial LiDAR-based 3D Object Detection and Tracking for Traffic Monitoring [J].
Cherif, Baya ;
Ghazzai, Hakim ;
Alsharoa, Ahmad ;
Besbes, Hichem ;
Massoud, Yehia .
2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
[26]   Density Awareness and Neighborhood Attention for LiDAR-Based 3D Object Detection [J].
Qian, Hanxiang ;
Wu, Peng ;
Sun, Xiaoyong ;
Guo, Xiaojun ;
Su, Shaojing .
PHOTONICS, 2022, 9 (11)
[27]   LiDAR-Based Intensity-Aware Outdoor 3D Object Detection [J].
Naich, Ammar Yasir ;
Carrion, Jesus Requena .
SENSORS, 2024, 24 (09)
[28]   SRFDet3D: Sparse Region Fusion based 3D Object Detection [J].
Erabati, Gopi Krishna ;
Araujo, Helder .
NEUROCOMPUTING, 2024, 593
[29]   Point Cloud 3D Object Detection Based on Improved SECOND Algorithm [J].
Zhang Ying ;
Jiang Liangliang ;
Zhang Dongbo ;
Duan Wanlin ;
Sun Yue .
LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
[30]   LiDAR-Based 3D Temporal Object Detection via Motion-Aware LiDAR Feature Fusion [J].
Park, Gyuhee ;
Koh, Junho ;
Kim, Jisong ;
Moon, Jun ;
Choi, Jun Won .
SENSORS, 2024, 24 (14)