Class-Prompting Transformer for Incremental Semantic Segmentation

被引:1
作者
Song, Zichen [1 ]
Shi, Zhaofeng [1 ]
Shang, Chao [1 ]
Meng, Fanman [1 ]
Xu, Linfeng [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Transformers; Task analysis; Semantic segmentation; Visualization; Semantics; Decoding; Computational modeling; Incremental semantic segmentation; knowledge distillation; class prompt learning;
D O I
10.1109/ACCESS.2023.3315327
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Class-incremental Semantic Segmentation (CISS) aims to learn new tasks sequentially that assign a specific category to each pixel of a given image while preserving the original capability to segment the old classes even if the labels of old tasks are absent. Most existing CISS methods suppress catastrophic forgetting by directly distilling on specific layers, which ignores the semantic gap between training data from the old and new classes with different distributions and leads to distillation errors, thus affecting segmentation performance. In this paper, we propose a Class-prompting Transformer (CPT) to introduce external prior knowledge provided by a pre-trained vision-language encoder into CISS pipelines for bridging the old and new classes and performing more generalized initialization and distillation. Specifically, we proposed a Prompt-guided Initialization Module (PIM), which measures the relationships between the class prompts and old query parameters to initialize the new query parameters for relocating the previous knowledge to the learning of new tasks. Then, a Semantic-aligned Distillation Module (SDM) is proposed to incorporate class prompt information with the class-aware embeddings extracted from the decoder to prevent the semantic gap problem between distinct class data and conduct adaptive knowledge transfer to suppress catastrophic forgetting. Extensive experiments on Pascal VOC and ADE20K datasets for the CISS task demonstrate the superiority of the proposed method, which achieves state-of-the-art performance.
引用
收藏
页码:100154 / 100164
页数:11
相关论文
共 60 条
[51]   EndpointsWeight Fusion for Class Incremental Semantic Segmentation [J].
Xiao, Jia-Wen ;
Zhang, Chang-Bin ;
Feng, Jiekang ;
Liu, Xialei ;
van de Weijer, Joost ;
Cheng, Ming-Ming .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, :7204-7213
[52]  
Xie EZ, 2021, ADV NEUR IN, V34
[53]  
Yang G., 2023, IEEE Trans. Multimedia, V25, P3841
[54]   Uncertainty-Aware Contrastive Distillation for Incremental Semantic Segmentation [J].
Yang, Guanglei ;
Fini, Enrico ;
Xu, Dan ;
Rota, Paolo ;
Ding, Mingli ;
Nabi, Moin ;
Alameda-Pineda, Xavier ;
Ricci, Elisa .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (02) :2567-2581
[55]   Representation Compensation Networks for Continual Semantic Segmentation [J].
Zhang, Chang-Bin ;
Xiao, Jia-Wen ;
Liu, Xialei ;
Chen, Ying-Cong ;
Cheng, Ming-Ming .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :7043-7054
[56]   RBC: Rectifying the Biased Context in Continual Semantic Segmentation [J].
Zhao, Hanbin ;
Yang, Fengyu ;
Fu, Xinghe ;
Li, Xi .
COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 :55-72
[57]   Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers [J].
Zheng, Sixiao ;
Lu, Jiachen ;
Zhao, Hengshuang ;
Zhu, Xiatian ;
Luo, Zekun ;
Wang, Yabiao ;
Fu, Yanwei ;
Feng, Jianfeng ;
Xiang, Tao ;
Torr, Philip H. S. ;
Zhang, Li .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :6877-6886
[58]   Scene Parsing through ADE20K Dataset [J].
Zhou, Bolei ;
Zhao, Hang ;
Puig, Xavier ;
Fidler, Sanja ;
Barriuso, Adela ;
Torralba, Antonio .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5122-5130
[59]   Prototype Augmentation and Self-Supervision for Incremental Learning [J].
Zhu, Fei ;
Zhang, Xu-Yao ;
Wang, Chuang ;
Yin, Fei ;
Liu, Cheng-Lin .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :5867-5876
[60]   Continual Semantic Segmentation with Automatic Memory Sample Selection [J].
Zhu, Lanyun ;
Chen, Tianrun ;
Yin, Jianxiong ;
See, Simon ;
Liu, Jun .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, :3082-3092