Some half-space theorems in the real projective space

被引:1
|
作者
Velasquez, Marco A. L. [1 ]
de Lima, Henrique F. [1 ]
de Lacerda, Jose H. H. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, PB, Brazil
来源
关键词
Real projective space; Linear Weingarten two-sided hypersurfaces; Strong stability; Geodesic spheres; CONSTANT MEAN-CURVATURE; LINEAR WEINGARTEN HYPERSURFACES; MINIMAL GRAPHS; STABILITY; SURFACES;
D O I
10.1007/s40863-023-00371-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, under certain conditions on the mean and scalar curvatures, we prove that there are no strongly stable linear Weingarten closed two-sided hypersurfaces immersed in a certain region determined by a geodesic sphere of the (n + 1)-dimensional real projective space RPn+1. We also provide a rigidity result for these hypersurfaces.
引用
收藏
页码:595 / 614
页数:20
相关论文
共 50 条
  • [1] Some half-space theorems in the real projective space
    Marco A. L. Velásquez
    Henrique F. de Lima
    José H. H. de Lacerda
    São Paulo Journal of Mathematical Sciences, 2023, 17 : 595 - 614
  • [2] Half-space results for generalized linear Weingarten hypersurfaces immersed in the real projective space
    Velasquez, Marco A. L.
    de Lima, Henrique F.
    de Lacerda, Jose H. H.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (03):
  • [3] Half-space theorems for mean curvature one surfaces in hyperbolic space
    Rodriguez, L
    Rosenberg, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) : 2755 - 2762
  • [4] ON THE HALF-SPACE MATCHING METHOD FOR REAL
    Dhia, Anne-Sophie Bonnet-Ben
    Chandler-wilde, Simon N.
    Fliss, Sonia
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (04) : 1287 - 1311
  • [5] Half-space theorems for minimal surfaces with bounded curvature
    Bessa, GP
    Jorge, LP
    Oliveira, G
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 57 (03) : 493 - 508
  • [6] MOTION OF A VIBRATOR ON A HALF-SPACE AND ON A LAYERED HALF-SPACE
    FARRELL, WE
    GEOPHYSICS, 1979, 44 (03) : 332 - 332
  • [7] Paley–Wiener Theorems on the Siegel Upper Half-Space
    Nicola Arcozzi
    Alessandro Monguzzi
    Marco M. Peloso
    Maura Salvatori
    Journal of Fourier Analysis and Applications, 2019, 25 : 1958 - 1986
  • [8] On some problems of diffusion in an isotropic half-space
    Matysiak, SJ
    Mieszkowski, R
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2003, 30 (05) : 625 - 632
  • [9] Paley-Wiener Theorems on the Siegel Upper Half-Space
    Arcozzi, Nicola
    Monguzzi, Alessandro
    Peloso, Marco M.
    Salvatori, Maura
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (04) : 1958 - 1986
  • [10] Finite rank product theorems for Toeplitz operators on the half-space
    Choe, Boo Rim
    Koo, Hyungwoon
    Nam, Kyesook
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2009, 61 (03) : 885 - 919