General kernel estimates of Schrodinger-type operators with unbounded diffusion terms

被引:0
作者
Caso, Loredana [1 ]
Kunze, Markus [2 ]
Porfido, Marianna [1 ]
Rhandi, Abdelaziz [1 ]
机构
[1] Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[2] Univ Konstanz, Fachbereich Mahemat & Stat, D-78457 Constance, Germany
关键词
Schrodinger-type operator; unbounded coefficients; kernel estimates; ultracontractive semigroup; ELLIPTIC-OPERATORS; COEFFICIENTS; DRIFT;
D O I
10.1017/prm.2023.45
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first prove that the realization A(min) of A := div(Q del) - V in L-2(R-d) with unbounded coefficients generates a symmetric sub-Markovian and ultracontractive semigroup on L-2(R-d) which coincides on L-2(R-d) boolean AND C-b(R-d) with the minimal semigroup generated by a realization of A on C-b(R-d). Moreover, using time-dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernel of A and deduce some spectral properties of Amin in the case of polynomially and exponentially growing diffusion and potential coefficients.
引用
收藏
页码:929 / 960
页数:32
相关论文
共 30 条
[1]   Time dependent Lyapunov functions for some Kolmogorov semigroups perturbed by unbounded potentials [J].
Aibeche, Aissa ;
Laidoune, Karima ;
Rhandi, Abdelaziz .
ARCHIV DER MATHEMATIK, 2010, 94 (06) :565-577
[2]  
Aliprantis Ch.D., 2006, Positive operators, DOI [10.1007/978-1-4020-5008-4, DOI 10.1007/978-1-4020-5008-4]
[3]  
[Anonymous], 2011, Progr. Nonlinear Differential Equations Appl.
[4]   Gaussian estimates for elliptic operators with unbounded drift [J].
Arendt, Wolfgang ;
Metafune, Giorgio ;
Pallara, Diego .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :505-517
[5]  
[Богачев В.И. Bogachev V.I.], 2005, [Теория вероятностей и ее применения, Theory of Probability and its Applications, Teoriya veroyatnostei i ee primeneniya], V50, P652
[6]   Elliptic operators with unbounded diffusion, drift and potential terms [J].
Boutiah, S. E. ;
Gregorio, F. ;
Rhandi, A. ;
Tacelli, C. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (03) :2184-2204
[7]   Some results on second-order elliptic operators with polynomially growing coefficients in Lp-spaces [J].
Boutiah, Sallah Eddine ;
Caso, Loredana ;
Gregorio, Federica ;
Tacelli, Cristian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (02)
[8]   KERNEL ESTIMATES FOR ELLIPTIC OPERATORS WITH UNBOUNDED DIFFUSION, DRIFT AND POTENTIAL TERMS [J].
Boutiah, Sallah Eddine ;
Rhandi, Abdelaziz ;
Tacelli, Cristian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) :803-817
[9]   Kernel Estimates for Schrodinger Type Operators with Unbounded Diffusion and Potential Terms [J].
Canale, Anna ;
Rhandi, Abdelaziz ;
Tacelli, Cristian .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2017, 36 (04) :377-392
[10]  
Canale A, 2016, ANN SCUOLA NORM-SCI, V16, P581, DOI 10.2422/2036-2145.201409_007