Controlling the Microstructure of Cobalt-Free, High-Nickel Cathode Materials with Dopant Solubility for Lithium-Ion Batteries

被引:20
作者
Kim, Hanseul [1 ,2 ]
Kong, Youngsun [3 ]
Seong, Won Mo [3 ]
Manthiram, Arumugam [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[3] Samsung SDI, SDI R&D Ctr, Suwon 16678, Gyeonggi Do, South Korea
关键词
lithium-ion batteries; layered oxide cathodes; dopant solubility; microstructure; areal currentdensity; LI-ION; RICH; CRACKING;
D O I
10.1021/acsami.3c02009
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Microstructural engineering is becoming notably importantin therealization of cobalt-free, high-nickel layered oxide cathodes forlithium-ion batteries since it is one of the most effective ways toimprove the overall performance by enhancing the mechanical and electrochemicalproperties of cathodes. In this regard, various dopants have beeninvestigated to improve the structural and interfacial stabilitiesof cathodes with doping. Yet, there is a lack of a systematic understandingof the effects of dopants on microstructural engineering and cellperformances. Herein, we show controlling the primary particle sizeby adopting dopants with different oxidation states and solubilitiesin the host structure as an effective way for tuning the cathode microstructureand performance. The reduction in the primary particle size of cobalt-freehigh-nickel layered oxide cathode materials, e.g., LiNi0.95Mn0.05O2 (NM955), with high-valent dopants,such as Mo6+ and W6+, gives a more homogeneousdistribution of Li during cycling with suppressed microcracking, cellresistance, and transition-metal dissolution compared to lower-valentdopants, such as Sn4+ and Zr4+. Accordingly,this approach offers promising electrochemical performance with cobalt-freehigh-nickel layered oxide cathodes.
引用
收藏
页码:26585 / 26592
页数:8
相关论文
共 37 条
[1]   Extensive comparison of doping and coating strategies for Ni-rich positive electrode materials [J].
Ahaliabadeh, Zahra ;
Kong, Xiangze ;
Fedorovskaya, Ekaterina ;
Kallio, Tanja .
JOURNAL OF POWER SOURCES, 2022, 540
[2]   Boron doped Ni-rich LiNi0.85Co0.10Mn0.05O2 cathode materials studied by structural analysis, solid state NMR, computational modeling, and electrochemical performance [J].
Amalraj, Susai Francis ;
Raman, Ravikumar ;
Chakraborty, Arup ;
Leifer, Nicole ;
Nanda, Raju ;
Kunnikuruvan, Sooraj ;
Kravchuk, Tatyana ;
Grinblat, Judith ;
Ezersky, Vladimir ;
Sun, Rong ;
Deepak, Francis Leonard ;
Erk, Christoph ;
Wu, Xiaohan ;
Maiti, Sandipan ;
Sclar, Hadar ;
Goobes, Gil ;
Major, Dan Thomas ;
Talianker, Michael ;
Markovsky, Boris ;
Aurbach, Doron .
ENERGY STORAGE MATERIALS, 2021, 42 :594-607
[3]   Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy [J].
Bak, Seong-Min ;
Hu, Enyuan ;
Zhou, Yongning ;
Yu, Xiqian ;
Senanayake, Sanjaya D. ;
Cho, Sung-Jin ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing ;
Nam, Kyung-Wan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22594-22601
[4]   Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling [J].
Boyce, Adam M. ;
Martinez-Paneda, Emilio ;
Wade, Aaron ;
Zhang, Ye Shui ;
Bailey, Josh J. ;
Heenan, Thomas M. M. ;
Brett, Dan J. L. ;
Shearing, Paul R. .
JOURNAL OF POWER SOURCES, 2022, 526
[5]   Understanding the Role of Minor Molybdenum Doping in LiNi0.5Co0.2Mn0.3O2 Electrodes: from Structural and Surface Analyses and Theoretical Modeling to Practical Electrochemical Cells [J].
Breuer, Ortal ;
Chakraborty, Arup ;
Liu, Jing ;
Kravchuk, Tatyana ;
Burstein, Larisa ;
Grinblat, Judith ;
Kauffman, Yaron ;
Gladkih, Alexandr ;
Nayak, Prasant ;
Tsubery, Merav ;
Frenkel, Anatoly I. ;
Talianker, Michael ;
Major, Dan T. ;
Markovsky, Boris ;
Aurbach, Doron .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (35) :29608-29621
[6]   Site-Selective In Situ Electrochemical Doping for Mn-Rich Layered Oxide Cathode Materials in Lithium-Ion Batteries [J].
Choi, Aram ;
Lim, Jungwoo ;
Kim, Hyung-Jin ;
Jung, Sung Chul ;
Lim, Hyung-Woo ;
Kim, Hanseul ;
Kwon, Mi-Sook ;
Han, Young Kyu ;
Oh, Seung M. ;
Lee, Kyu Tae .
ADVANCED ENERGY MATERIALS, 2018, 8 (11)
[7]   Insights on the Stabilization of Nickel-Rich Cathode Surfaces: Evidence of Inherent Instabilities in the Presence of Conformal Coatings [J].
Croy, Jason R. ;
O'Hanlon, Daniel C. ;
Sharifi-Asl, Soroosh ;
Murphy, Michael ;
Mane, Anil ;
Lee, Chang-Wook ;
Trask, Stephen E. ;
Shahbazian-Yassar, Reza ;
Balasubramanian, Mahalingam .
CHEMISTRY OF MATERIALS, 2019, 31 (11) :3891-3899
[8]   Designing In-Situ-Formed Interphases Enables Highly Reversible Cobalt-Free LiNiO2 Cathode for Li-ion and Li-metal Batteries [J].
Deng, Tao ;
Fang, Xiulin ;
Cao, Longsheng ;
Chen, Ji ;
Hou, Singyuk ;
Ji, Xiao ;
Chen, Long ;
Li, Shuang ;
Zhou, Xiuquan ;
Hu, Enyuan ;
Su, Dong ;
Yang, Xiao-Qing ;
Wang, Chunsheng .
JOULE, 2019, 3 (10) :2550-2564
[9]   Formation of Surface Impurities on Lithium-Nickel-Manganese-Cobalt Oxides in the Presence of CO2 and H2O [J].
Fang, Zongtang ;
Confer, Matthew P. ;
Wang, Yixiao ;
Wang, Qiang ;
Kunz, M. Ross ;
Dufek, Eric J. ;
Liaw, Boryann ;
Klein, Tonya M. ;
Dixon, David A. ;
Fushimi, Rebecca .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (27) :10261-10274
[10]   Mechanism of Action of the Tungsten Dopant in LiNiO2 Positive Electrode Materials [J].
Geng, Chenxi ;
Rathore, Divya ;
Heino, Dylan ;
Zhang, Ning ;
Hamam, Ines ;
Zaker, Nafiseh ;
Botton, Gianluigi A. ;
Omessi, Roee ;
Phattharasupakun, Nutthaphon ;
Bond, Toby ;
Yang, Chongyin ;
Dahn, J. R. .
ADVANCED ENERGY MATERIALS, 2022, 12 (06)