Fusing feature and output space for unsupervised domain adaptation on medical image segmentation

被引:3
|
作者
Wang, Shengsheng [1 ,2 ]
Fu, Zihao [1 ,2 ,3 ]
Wang, Bilin [1 ,2 ]
Hu, Yulong [1 ,2 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun, Peoples R China
[2] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun, Peoples R China
[3] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
关键词
adversarial domain adaptation; domain adaptation; image segmentation; medical image;
D O I
10.1002/ima.22879
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image segmentation requires large amounts of annotated data. However, collecting massive datasets with annotations is difficult since they are expensive and labor-intensive. The unsupervised domain adaptation (UDA) for image segmentation is a promising approach to address the label-scare problem on the target domain, which enables the trained model on the source labeled domain to be adaptive to the target domain. The adversarial-based methods encourage extracting the domain-invariant features by training a domain discriminator to mitigate the domain gap. Existing UDA segmentation methods fail to obtain satisfied segmentation results as they only consider the global knowledge of output space while neglecting the local information of feature space. In this paper, a fusing feature and output (FFO) space method is proposed for UDA, which in the context of medical image segmentation. The proposed model is learned by training a more powerful domain discriminator, which considers features extracted from both feature space and output space. Extensive experiments carried out on several medical image datasets show the adaptation effectiveness of our approach in improving the segmentation performance.
引用
收藏
页码:1672 / 1681
页数:10
相关论文
共 50 条
  • [1] Review of Unsupervised Domain Adaptation in Medical Image Segmentation
    Hu, Wei
    Xu, Qiaozhi
    Ge, Xiangwei
    Yu, Lei
    Computer Engineering and Applications, 2024, 60 (06) : 10 - 26
  • [2] Rethinking Disentanglement in Unsupervised Domain Adaptation for Medical Image Segmentation
    Wang, Yan
    Chen, Yixin
    Zhang, Yingying
    Zhu, Haogang
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [3] Style Consistency Unsupervised Domain Adaptation Medical Image Segmentation
    Chen, Lang
    Bian, Yun
    Zeng, Jianbin
    Meng, Qingquan
    Zhu, Weifang
    Shi, Fei
    Shao, Chengwei
    Chen, Xinjian
    Xiang, Dehui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4882 - 4895
  • [4] Rethinking adversarial domain adaptation: Orthogonal decomposition for unsupervised domain adaptation in medical image segmentation
    Sun, Yongheng
    Dai, Duwei
    Xu, Songhua
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [5] Rethinking adversarial domain adaptation: Orthogonal decomposition for unsupervised domain adaptation in medical image segmentation
    Sun, Yongheng
    Dai, Duwei
    Xu, Songhua
    Medical Image Analysis, 2022, 82
  • [6] Unsupervised Domain Adaptation through Shape Modeling for Medical Image Segmentation
    Yao, Yuan
    Liu, Fengze
    Zhou, Zongwei
    Wang, Yan
    Shen, Wei
    Yuille, Alan
    Lu, Yongyi
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 1444 - 1458
  • [7] ADAPTIVE ENTROPY REGULARIZATION FOR UNSUPERVISED DOMAIN ADAPTATION IN MEDICAL IMAGE SEGMENTATION
    Shi, Andrew
    Feng, Wei
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [8] Black-Box Unsupervised Domain Adaptation for Medical Image Segmentation
    Kondo, Satoshi
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, DART 2023, 2024, 14293 : 22 - 30
  • [9] Style adaptation for avoiding semantic inconsistency in Unsupervised Domain Adaptation medical image segmentation
    Liu, Ziqiang
    Chen, Zhao-Min
    Chen, Huiling
    Teng, Shu
    Chen, Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105
  • [10] Unsupervised Domain Adaptation in Medical Image Segmentation via Fourier Feature Decoupling and Multi-teacher Distillation
    Hu, Wei
    Xu, Qiaozhi
    Qi, Xuanhao
    Yin, Yanjun
    Zhi, Min
    Lian, Zhe
    Yang, Na
    Duan, Wentao
    Yu, Lei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VI, ICIC 2024, 2024, 14867 : 98 - 110