In-Memory Tactile Sensor with Tunable Steep-Slope Region for Low-Artifact and Real-Time Perception of Mechanical Signals

被引:8
作者
Chen, Shisheng [1 ]
Ren, Xueyang [1 ,2 ]
Xu, Jingfeng [1 ]
Yuan, Yuehui [1 ]
Shi, Jing [3 ,4 ]
Ling, Huaxu [1 ]
Yang, Yizhuo [1 ]
Tang, Wenjie [1 ]
Lu, Fangzhou [1 ]
Kong, Xiangqing [4 ,5 ]
Hu, Benhui [6 ,7 ]
机构
[1] Nanjing Med Univ, Sch Biomed Engn & Informat, Nanjing 211166, Peoples R China
[2] Southeast Univ, Sch Biol Sci & Med Engn, Nanjing 210096, Peoples R China
[3] Nanjing Med Univ, Dept Cardiol, Affiliated Hosp 1, Nanjing 210029, Peoples R China
[4] Cardiovasc Device & Tech Engn Lab Jiangsu Prov, Nanjing 210029, Peoples R China
[5] Nanjing Med Univ, Dept Cardiol, Affiliated Hosp 1, Nanjing 210029, Peoples R China
[6] Nanjing Med Univ, Sch Biomed Engn & Informat, Affiliated Eye Hosp, Nanjing 211166, Peoples R China
[7] Nanjing Med Univ, Affiliated Hosp 2, Nanjing 211166, Peoples R China
基金
中国国家自然科学基金;
关键词
tactile sensor; low-artifact perception; steep-slope; nonvolatile transistor; point-of-care diagnosis; PRESSURE SENSOR; PLASTICITY; SILICON; DEVICE; TREMOR;
D O I
10.1021/acsnano.2c08110
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A tactile sensor needs to perceive static pressures and dynamic forces in real-time with high accuracy for early diagnosis of diseases and development of intelligent medical prosthetics. However, biomechanical and external mechanical signals are always aliased (including variable physiological and pathological events and motion artifacts), bringing great challenges to precise identification of the signals of interest (SOI). Although the existing signal segmentation methods can extract SOI and remove artifacts by blind source separation and/or additional filters, they may restrict the recognizable patterns of the device, and even cause signal distortion. Herein, an in-memory tactile sensor (IMT) with a dynamically adjustable steep-slope region (SSR) and nanocavity-induced nonvolatility (retention time >1000 s) is proposed on the basis of a machano-gated transistor, which directly transduces the tactile stimuli to various dope states of the channel. The programmable SSR endows the sensor with a critical window of responsiveness, realizing the perception of signals on demand. Owing to the nonvolatility of the sensor, the mapping of mechanical cues with high spatiotemporal accuracy and associative learning between two physical inputs are realized, contributing to the accurate assessment of the tissue health status and ultralow-power (about 25.1 mu W) identification of an occasionally occurring tremor.
引用
收藏
页码:2134 / 2147
页数:14
相关论文
共 69 条
  • [11] Flexible Neuromorphic Architectures Based on Self-Supported Multiterminal Organic Transistors
    Fu, Ying
    Kong, Ling-an
    Chen, Yang
    Wang, Juxiang
    Qian, Chuan
    Yuan, Yongbo
    Sun, Jia
    Gao, Yongli
    Wan, Qing
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (31) : 26443 - 26450
  • [12] Stretchable, Transparent, and Self-Patterned Hydrogel-Based Pressure Sensor for Human Motions Detection
    Ge, Gang
    Zhang, Yizhou
    Shao, Jinjun
    Wang, Wenjun
    Si, Weili
    Huang, Wei
    Dong, Xiaochen
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (32)
  • [13] Giridharagopal R, 2017, NAT MATER, V16, P737, DOI [10.1038/NMAT4918, 10.1038/nmat4918]
  • [14] Artificial Neural Pathway Based on a Memristor Synapse for Optically Mediated Motion Learning
    He, Ke
    Liu, Yaqing
    Yu, Jiancan
    Guo, Xintong
    Wang, Ming
    Zhang, Liandong
    Wan, Changjin
    Wang, Ting
    Zhou, Changjiu
    Chen, Xiaodong
    [J]. ACS NANO, 2022, 16 (06) : 9691 - 9700
  • [15] Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor
    Ji, Xudong
    Paulsen, Bryan D.
    Chik, Gary K. K.
    Wu, Ruiheng
    Yin, Yuyang
    Chan, Paddy K. L.
    Rivnay, Jonathan
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [16] A bioinspired flexible organic artificial afferent nerve
    Kim, Yeongin
    Chortos, Alex
    Xu, Wentao
    Liu, Yuxin
    Oh, Jin Young
    Son, Donghee
    Kang, Jiheong
    Foudeh, Amir M.
    Zhu, Chenxin
    Lee, Yeongjun
    Niu, Simiao
    Liu, Jia
    Pfattner, Raphael
    Bao, Zhenan
    Lee, Tae-Woo
    [J]. SCIENCE, 2018, 360 (6392) : 998 - +
  • [17] Attention and the multiple stages of multisensory integration: A review of audiovisual studies
    Koelewijn, Thomas
    Bronkhorst, Adelbert
    Theeuwes, Jan
    [J]. ACTA PSYCHOLOGICA, 2010, 134 (03) : 372 - 384
  • [18] Organic neuromorphic electronics for sensorimotor integration and learning in robotics
    Krauhausen, Imke
    Koutsouras, Dimitrios A.
    Melianas, Armantas
    Keene, Scott T.
    Lieberth, Katharina
    Ledanseur, Hadrien
    Sheelamanthula, Rajendar
    Giovannitti, Alexander
    Torricelli, Fabrizio
    Mcculloch, Iain
    Blom, Paul W. M.
    Salleo, Alberto
    van de Burgt, Yoeri
    Gkoupidenis, Paschalis
    [J]. SCIENCE ADVANCES, 2021, 7 (50)
  • [19] Environment-Adaptable Artificial Visual Perception Behaviors Using a Light-Adjustable Optoelectronic Neuromorphic Device Array
    Kwon, Sung Min
    Cho, Sung Woon
    Kim, Minho
    Heo, Jae Sang
    Kim, Yong-Hoon
    Park, Sung Kyu
    [J]. ADVANCED MATERIALS, 2019, 31 (52)
  • [20] Gelatin-hydrogel based organic synaptic transistor
    Lai, Dengxiao
    Li, Enlong
    Yan, Yujie
    Liu, Yaqian
    Zhong, Jianfeng
    Lv, Dongxu
    Ke, Yudan
    Chen, Huipeng
    Guo, Tailiang
    [J]. ORGANIC ELECTRONICS, 2019, 75