Construction of quantum codes from multivariate polynomial rings

被引:0
作者
Yu, Cong [1 ]
Zhu, Shixin [1 ]
Tian, Fuyin [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
[2] Anhui Agr Univ, Sch Sci, Hefei 230036, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum error-correcting codes; Multivariate polynomial rings; Hermitian construction; CONTAINING CONSTACYCLIC CODES; ERROR-CORRECTING CODES;
D O I
10.1007/s10623-024-01387-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we use multivariate polynomial rings to construct quantum error-correcting codes (QECCs) via Hermitian construction. We establish a relation between linear codes and ideals of multivariate polynomial rings. We give a necessary and suffcient condition for a multivariate polynomial to generate a Hermitian dual-containing code. By comparing with the literatures in recent years, we construct 31 new QECCs over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}, where q=3,4,5,7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=3,4,5,7$$\end{document}. Some of them reach quantum singleton bound and some of them exceed quantum GV bound.
引用
收藏
页码:2219 / 2234
页数:16
相关论文
共 50 条
  • [41] Quantum convolutional codes derived from constacyclic codes
    Yan, Tingsu
    Huang, Xinmei
    Tang, Yuansheng
    MODERN PHYSICS LETTERS B, 2014, 28 (31):
  • [42] On new quantum codes from matrix product codes
    Liu, Xiusheng
    Dinh, Hai Q.
    Liu, Hualu
    Yu, Long
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (04): : 579 - 589
  • [43] A family of constacyclic codes over a class of non-chain rings Aq,r and new quantum codes
    Islam, Habibul
    Patel, Shikha
    Prakash, Om
    Sole, Patrick
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (04) : 2493 - 2514
  • [44] Multivariate Goppa Codes
    Lopez, Hiram H.
    Matthews, Gretchen L.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (01) : 126 - 137
  • [45] A Construction of Quantum Stabilizer Codes Based on Syndrome Assignment by Classical Parity-Check Matrices
    Lai, Ching-Yi
    Lu, Chung-Chin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (10) : 7163 - 7179
  • [46] Some New Quantum Codes from Constacyclic BCH Codes
    Li, Ping
    Wei, Yancong
    Kai, Xiaoshan
    Li, Jin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2025, 64 (02)
  • [47] Quantum Synchronizable Codes From Quadratic Residue Codes and Their Supercodes
    Xie, Yixuan
    Yuan, Jinhong
    Fujiwara, Yuichiro
    2014 IEEE INFORMATION THEORY WORKSHOP (ITW), 2014, : 172 - 176
  • [48] Quantum codes from Hadamard matrices
    Ke, W. F.
    Lai, K. F.
    Zhang, R. B.
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (07) : 847 - 854
  • [49] Quantum codes from neural networks
    Bausch, Johannes
    Leditzky, Felix
    NEW JOURNAL OF PHYSICS, 2020, 22 (02):
  • [50] Quantum codes from concatenated algebraic-geometric codes
    Chen, H
    Ling, S
    Xing, CP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (08) : 2915 - 2920