Construction of quantum codes from multivariate polynomial rings

被引:0
作者
Yu, Cong [1 ]
Zhu, Shixin [1 ]
Tian, Fuyin [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
[2] Anhui Agr Univ, Sch Sci, Hefei 230036, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum error-correcting codes; Multivariate polynomial rings; Hermitian construction; CONTAINING CONSTACYCLIC CODES; ERROR-CORRECTING CODES;
D O I
10.1007/s10623-024-01387-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we use multivariate polynomial rings to construct quantum error-correcting codes (QECCs) via Hermitian construction. We establish a relation between linear codes and ideals of multivariate polynomial rings. We give a necessary and suffcient condition for a multivariate polynomial to generate a Hermitian dual-containing code. By comparing with the literatures in recent years, we construct 31 new QECCs over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}, where q=3,4,5,7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=3,4,5,7$$\end{document}. Some of them reach quantum singleton bound and some of them exceed quantum GV bound.
引用
收藏
页码:2219 / 2234
页数:16
相关论文
共 50 条
  • [31] On construction of quantum codes with dual-containing quasi-cyclic codes
    Guan, Chaofeng
    Li, Ruihu
    Lu, Liangdong
    Liu, Yang
    Song, Hao
    QUANTUM INFORMATION PROCESSING, 2022, 21 (07)
  • [32] Ternary Quantum Codes Constructed from a Class of Quasi-Twisted Codes
    Li, Zhihao
    Li, Ruihu
    Guan, Chaofeng
    Lu, Liangdong
    Song, Hao
    Fu, Qiang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2025, E108A (02) : 117 - 122
  • [33] A Construction of Optimal Nonbinary Pure Quantum Stabilizer Codes
    Sujuan Huang
    Zhonghua Sun
    Shixin Zhu
    International Journal of Theoretical Physics, 61
  • [34] On construction of quantum codes with dual-containing quasi-cyclic codes
    Chaofeng Guan
    Ruihu Li
    Liangdong Lu
    Yang Liu
    Hao Song
    Quantum Information Processing, 21
  • [35] Sparse Quantum Codes from Quantum Circuits
    Bacon, Dave
    Flammia, Steven T.
    Harrow, Aram W.
    Shi, Jonathan
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 327 - 334
  • [36] Sparse Quantum Codes From Quantum Circuits
    Bacon, Dave
    Flammia, Steven T.
    Harrow, Aram W.
    Shi, Jonathan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) : 2464 - 2479
  • [37] Quantum codes constructed from binary cyclic codes
    Li, RH
    Li, XL
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (02) : 265 - 272
  • [38] Some new quantum codes from constacyclic codes
    Shanqi Pang
    Miaomiao Zhang
    Mengqian Chen
    Chaomeng Zhang
    Quantum Information Processing, 23
  • [39] Some new quantum codes from constacyclic codes
    Pang, Shanqi
    Zhang, Miaomiao
    Chen, Mengqian
    Zhang, Chaomeng
    QUANTUM INFORMATION PROCESSING, 2024, 23 (01)
  • [40] On new quantum codes from matrix product codes
    Xiusheng Liu
    Hai Q. Dinh
    Hualu Liu
    Long Yu
    Cryptography and Communications, 2018, 10 : 579 - 589