Construction of quantum codes from multivariate polynomial rings

被引:0
|
作者
Yu, Cong [1 ]
Zhu, Shixin [1 ]
Tian, Fuyin [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
[2] Anhui Agr Univ, Sch Sci, Hefei 230036, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum error-correcting codes; Multivariate polynomial rings; Hermitian construction; CONTAINING CONSTACYCLIC CODES; ERROR-CORRECTING CODES;
D O I
10.1007/s10623-024-01387-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we use multivariate polynomial rings to construct quantum error-correcting codes (QECCs) via Hermitian construction. We establish a relation between linear codes and ideals of multivariate polynomial rings. We give a necessary and suffcient condition for a multivariate polynomial to generate a Hermitian dual-containing code. By comparing with the literatures in recent years, we construct 31 new QECCs over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}, where q=3,4,5,7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=3,4,5,7$$\end{document}. Some of them reach quantum singleton bound and some of them exceed quantum GV bound.
引用
收藏
页码:2219 / 2234
页数:16
相关论文
共 50 条
  • [21] On the construction of optimal asymmetric quantum codes
    Wang, Liqi
    Zhu, Shixin
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2014, 12 (03)
  • [22] A Construction of MDS Quantum Convolutional Codes
    Zhang, Guanghui
    Chen, Bocong
    Li, Liangchen
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (09) : 3182 - 3194
  • [23] A new construction of quantum codes from quasi-cyclic codes over finite fields
    Biswas, Soumak
    Bhaintwal, Maheshanand
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (02) : 375 - 388
  • [24] Pseudo-cyclic Codes and the Construction of Quantum MDS Codes
    Li, Shuxing
    Xiong, Maosheng
    Ge, Gennian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (04) : 1703 - 1710
  • [25] A class of skew cyclic codes and application in quantum codes construction
    Dinh, Hai Q.
    Bag, Tushar
    Upadhyay, Ashish K.
    Bandi, Ramakrishna
    Tansuchat, Roengchai
    DISCRETE MATHEMATICS, 2021, 344 (02)
  • [26] Construction of minimal trellises for quantum stabilizer codes
    Xiao FangYing
    Chen HanWu
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (01) : 1 - 11
  • [27] Construction of quantum codes based on elementary transformations
    Chen H.
    Xiao F.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2011, 41 (05): : 934 - 937
  • [28] A construction of quantum turbo product codes based on CSS-type quantum convolutional codes
    Xiao, Hailin
    Ni, Ju
    Xie, Wu
    Ouyang, Shan
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2017, 15 (01)
  • [29] Construction of Binary Quantum Error-Correcting Codes from Orthogonal Array
    Pang, Shanqi
    Xu, Hanxiao
    Chen, Mengqian
    ENTROPY, 2022, 24 (07)
  • [30] Construction of Locally Repairable Codes with Multiple Localities Based on Encoding Polynomial
    Hamada, Tomoya
    Yagi, Hideki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (12): : 2047 - 2054