Construction of quantum codes from multivariate polynomial rings

被引:0
|
作者
Yu, Cong [1 ]
Zhu, Shixin [1 ]
Tian, Fuyin [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
[2] Anhui Agr Univ, Sch Sci, Hefei 230036, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum error-correcting codes; Multivariate polynomial rings; Hermitian construction; CONTAINING CONSTACYCLIC CODES; ERROR-CORRECTING CODES;
D O I
10.1007/s10623-024-01387-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we use multivariate polynomial rings to construct quantum error-correcting codes (QECCs) via Hermitian construction. We establish a relation between linear codes and ideals of multivariate polynomial rings. We give a necessary and suffcient condition for a multivariate polynomial to generate a Hermitian dual-containing code. By comparing with the literatures in recent years, we construct 31 new QECCs over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}, where q=3,4,5,7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=3,4,5,7$$\end{document}. Some of them reach quantum singleton bound and some of them exceed quantum GV bound.
引用
收藏
页码:2219 / 2234
页数:16
相关论文
共 50 条
  • [1] New Quantum Codes Derived from Group Rings
    Yu, Cong
    Zhu, Shixin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2023, 62 (06)
  • [2] New Quantum Codes Derived from Group Rings
    Cong Yu
    Shixin Zhu
    International Journal of Theoretical Physics, 62
  • [3] Hulls of constacyclic codes over finite non-chain rings and their applications in quantum codes construction
    Tian, Zhaoyang
    Gao, Jian
    Gao, Yun
    QUANTUM INFORMATION PROCESSING, 2024, 23 (01)
  • [4] Hulls of constacyclic codes over finite non-chain rings and their applications in quantum codes construction
    Zhaoyang Tian
    Jian Gao
    Yun Gao
    Quantum Information Processing, 23
  • [5] New Binary Quantum Codes from Group Rings and Skew Group Rings
    Cong Yu
    Shixin Zhu
    International Journal of Theoretical Physics, 63
  • [6] New quantum codes from constacyclic codes over finite chain rings
    Tang, Yongsheng
    Yao, Ting
    Xu, Heqian
    Kai, Xiaoshan
    QUANTUM INFORMATION PROCESSING, 2024, 23 (09)
  • [7] New Binary Quantum Codes from Group Rings and Skew Group Rings
    Yu, Cong
    Zhu, Shixin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (01)
  • [8] Construction of new quantum MDS codes derived from constacyclic codes
    Taneja, Divya
    Gupta, Manish
    Narula, Rajesh
    Bhullar, Jaskaran
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2017, 15 (01)
  • [9] Quantum codes derived from two construction methods
    Lu, Huimin
    Dong, Xuedong
    Liu, Zhenxing
    2015 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING ICISCE 2015, 2015, : 869 - 873
  • [10] Construction of quantum MDS codes from generalized Reed-Solomon codes
    Lu, Mingwei
    Zhu, Shixin
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2023, 21 (05)