A Fully Nonlinear Degenerate Free Transmission Problem

被引:0
作者
Huaroto, Gerardo [1 ]
Pimentel, Edgard A. [2 ]
Rampasso, Giane C. [3 ]
Swiech, Andrzej [4 ]
机构
[1] Fed Univ Alagoas IM UFAL, Dept Math, Cidade Univ, BR-57072900 Maceio, AL, Brazil
[2] Univ Coimbra, Dept Math, CMUC, P-3000143 Coimbra, Portugal
[3] Univ Fed Itajuba UNIFEI, Inst Matemat & Comp, Campus Prof Jose Rodrigues Seabra, BR-37500903 Itajuba, MG, Brazil
[4] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Free transmission problems; Optimal regularity of solutions; Existence of solutions; Viscosity inequalities; ELLIPTIC-EQUATIONS; VISCOSITY SOLUTIONS; MAXIMUM PRINCIPLE; REGULARITY; EIGENVALUE; GRADIENT; PERFECT;
D O I
10.1007/s40818-024-00168-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a free transmission problem driven by degenerate fully nonlinear operators. Our first result concerns the existence of a viscosity solution to the associated Dirichlet problem. By framing the equation in the context of viscosity inequalities, we prove regularity results for the constructed viscosity solution to the problem. Our findings include regularity in C1,alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C<^>{1,\alpha }$$\end{document} spaces, and an explicit characterization of alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} in terms of the degeneracy rates. We argue by perturbation methods, relating our problem to a homogeneous, fully nonlinear uniformly elliptic equation.
引用
收藏
页数:30
相关论文
共 41 条