Towards an enhanced understanding of the particle size effect on conversion/alloying lithium-ion anodes

被引:12
作者
Asenbauer, Jakob [1 ,2 ]
Horny, Dominik [3 ]
Olutogun, Mayokun [1 ,2 ]
Schulz, Katrin [3 ,4 ]
Bresser, Dominic [1 ,2 ]
机构
[1] Helmholtz Inst Ulm HIU, D-89081 Ulm, Germany
[2] Karlsruhe Inst Technol KIT, D-76021 Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM, D-76131 Karlsruhe, Germany
[4] Karlsruhe Univ Appl Sci, D-76133 Karlsruhe, Germany
来源
MATERIALS FUTURES | 2024年 / 3卷 / 01期
关键词
particle size; conversion; alloying; anode; lithium-ion battery; DOPED ZINC-OXIDE; OF-THE-ART; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; NEGATIVE ELECTRODES; SINGLE-CRYSTAL; GOING NANO; NANOPARTICLES; BATTERIES; IRON;
D O I
10.1088/2752-5724/ad1115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conversion/alloying materials (CAMs) represent a potential alternative to graphite as a Li-ion anode active material, especially for high-power applications. So far, however, essentially all studies on CAMs have been dealing with nano-sized particles, leaving the question of how the performance (and the de-/lithiation mechanism in general) is affected by the particle size. Herein, we comparatively investigate four different samples of Zn0.9Co0.1O with a particle size ranging from about 30 nm to a few micrometers. The results show that electrodes made of larger particles are more susceptible to fading due to particle displacement and particle cracking. The results also show that the conversion-type reaction in particular is affected by an increasing particle size, becoming less reversible due to the formation of relatively large transition metal (TM) and alloying metal nanograins upon lithiation, thus hindering an efficient electron transport within the initial particle, while the alloying contribution remains essentially unaffected. The generality of these findings is confirmed by also investigating Sn0.9Fe0.1O2 as a second CAM with a substantially greater contribution of the alloying reaction and employing Fe instead of Co as a TM dopant.
引用
收藏
页数:15
相关论文
共 64 条
[1]   Design and Demonstration of Three-Electrode Pouch Cells for Lithium-Ion Batteries [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Kalnaus, Sergiy ;
Wood, David L., III .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) :A1755-A1764
[2]   Lithium-ion batteries - Current state of the art and anticipated developments [J].
Armand, Michel ;
Axmann, Peter ;
Bresser, Dominic ;
Copley, Mark ;
Edstrom, Kristina ;
Ekberg, Christian ;
Guyomard, Dominique ;
Lestriez, Bernard ;
Novak, Petr ;
Petranikova, Martina ;
Porcher, Willy ;
Trabesinger, Sigita ;
Wohlfahrt-Mehrens, Margret ;
Zhang, Heng .
JOURNAL OF POWER SOURCES, 2020, 479
[3]   The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites [J].
Asenbauer, Jakob ;
Eisenmann, Tobias ;
Kuenzel, Matthias ;
Kazzazi, Arefeh ;
Chen, Zhen ;
Bresser, Dominic .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) :5387-5416
[4]   Revisiting the energy efficiency and (potential) full-cell performance of lithium-ion batteries employing conversion/alloying-type negative electrodes [J].
Asenbauer, Jakob ;
Varzi, Alberto ;
Passerini, Stefano ;
Bresser, Dominic .
JOURNAL OF POWER SOURCES, 2020, 473
[5]   Determination of the Volume Changes Occurring for Conversion/Alloying-Type Li-Ion Anodes upon Lithiation/Delithiation [J].
Asenbauer, Jakob ;
Kuenzel, Matthias ;
Eisenmann, Tobias ;
Birrozzi, Adele ;
Chang, Jeng-Kuei ;
Passerini, Stefano ;
Bresser, Dominic .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (19) :8238-8245
[6]   Scalable Synthesis of Microsized, Nanocrystalline Zn0.9Fe0.1O-C Secondary Particles and Their Use in Zn0.9Fe0.1O-C/LiNi0.5Mn1.5O4 Lithium-Ion Full Cells [J].
Asenbauer, Jakob ;
Binder, Joachim R. ;
Mueller, Franziska ;
Kuenzel, Matthias ;
Geiger, Dorin ;
Kaiser, Ute ;
Passerini, Stefano ;
Bresser, Dominic .
CHEMSUSCHEM, 2020, 13 (13) :3504-3513
[7]   Mechanistic Insights into the Lithiation and Delithiation of Iron Doped Zinc Oxide: The Nucleation Site Model [J].
Asenbauer, Jakob ;
Hoefling, Alexander ;
Indris, Sylvio ;
Tuebke, Jens ;
Passerini, Stefano ;
Bresser, Dominic .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) :8206-8218
[8]   Tailoring the Charge/Discharge Potentials and Electrochemical Performance of SnO2 Lithium-Ion Anodes by Transition Metal Co-Doping [J].
Birrozzi, Adele ;
Asenbauer, Jakob ;
Ashton, Thomas E. ;
Groves, Alexandra R. ;
Geiger, Dorin ;
Kaiser, Ute ;
Darr, Jawwad A. ;
Bresser, Dominic .
BATTERIES & SUPERCAPS, 2020, 3 (03) :284-292
[9]   Perspectives of automotive battery R&D in China, Germany, Japan, and the USA [J].
Bresser, Dominic ;
Hosoi, Kei ;
Howell, David ;
Li, Hong ;
Zeisel, Herbert ;
Amine, Khalil ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2018, 382 :176-178
[10]   Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes [J].
Bresser, Dominic ;
Passerini, Stefano ;
Scrosati, Bruno .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (11) :3348-3367