Progress and prospects for solving the "shuttle effect" in magnesium-sulfur batteries

被引:10
作者
Zhang, Zonghan [1 ,2 ]
Wang, Baofeng [1 ]
Ju, Shunlong [2 ]
Wu, Zhijun [3 ]
Yang, Yaxiong [3 ]
Pan, Hongge [3 ]
Yu, Xuebin [2 ]
机构
[1] Shanghai Univ Elect Power, Shanghai Key Lab Mat Protect & Adv Mat Elect Power, Shanghai 200090, Peoples R China
[2] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[3] Xian Technol Univ, Inst Sci & Technol New Energy, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
Rechargeable magnesium batteries; Magnesium sulfur battery; Polysulfide; Optimization strategies; Shuttle effect; ALUMINUM-CHLORIDE COMPLEX; LITHIUM-SULFUR; ELECTROLYTE-SOLUTIONS; CURRENT COLLECTOR; MG ELECTROLYTE; CATHODE; CARBON; PERFORMANCE; ION; EFFICIENT;
D O I
10.1016/j.ensm.2023.102933
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The magnesium-sulfur (Mg-S) battery is a promising next-generation battery system for large-scale energy storage applications due to its low cost, high safety, and high volumetric energy density. However, this battery system is still facing challenges such as rapid capacity loss and low polysulfide utilization caused by the poly sulfide "shuttle effect" during charging and discharging. Therefore, it is necessary to evaluate the progress of work to improve the shuttle effect in Mg-S batteries urgently. To provide researchers with a systematic insight into the shuttle effect of Mg-S batteries, this review is divided into three main stages based on the movement path of polysulfide during discharge. Improvement strategies for each stage are summarized in detail. Additionally, the role of copper collectors is evaluated, and the idea of applying the "uphill diffusion" theory to Mg-S batteries is proposed to optimize existing methods and develop innovative processes for this battery system. By focusing on these key aspects, this review aims to provide a comprehensive and focused evaluation of the current state of research on Mg-S batteries.
引用
收藏
页数:32
相关论文
共 190 条
[1]   Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li-S Batteries [J].
Abbas, Syed Ali ;
Ding, Jiang ;
Wu, Sheng Hui ;
Fang, Jason ;
Boopathi, Karunakara Moorthy ;
Mohapatra, Anisha ;
Lee, Li Wei ;
Wang, Pen-Cheng ;
Chang, Chien-Cheng ;
Chu, Chih Wei .
ACS NANO, 2017, 11 (12) :12436-12445
[2]  
Anasori B., 2019, Gogotsi in 2D Metal Carbides and Nitrides (MXenes), Y.
[3]   The Role of Surface Adsorbed Cl- Complexes in Rechargeable Magnesium Batteries [J].
Attias, Ran ;
Chae, Munseok S. ;
Dlugatch, Ben ;
Oliel, Matan ;
Goffer, Yosef ;
Aurbach, Doron .
ACS CATALYSIS, 2020, 10 (14) :7773-7784
[4]   Anode-Electrolyte Interfaces in Secondary Magnesium Batteries [J].
Attias, Ran ;
Salama, Michael ;
Hirsch, Baruch ;
Goffer, Yosef ;
Aurbach, Doron .
JOULE, 2019, 3 (01) :27-52
[5]   Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes [J].
Aurbach, D ;
Gizbar, H ;
Schechter, A ;
Chusid, O ;
Gottlieb, HE ;
Gofer, Y ;
Goldberg, I .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (02) :A115-A121
[6]   Electrolytic Conditioning of a Magnesium Aluminum Chloride Complex for Reversible Magnesium Deposition [J].
Barile, Christopher J. ;
Barile, Elizabeth C. ;
Zavadil, Kevin R. ;
Nuzzo, Ralph G. ;
Gewirth, Andrew A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (48) :27623-27630
[7]   Cation-Dependent Electrochemistry of Polysulfides in Lithium and Magnesium Electrolyte Solutions [J].
Bieker, Georg ;
Diddens, Diddo ;
Kolek, Martin ;
Borodin, Oleg ;
Winter, Martin ;
Bieker, Peter ;
Jalkanen, Kirsi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (38) :21770-21783
[8]   Influence of cations in lithium and magnesium polysulphide solutions: dependence of the solvent chemistry [J].
Bieker, Georg ;
Wellmann, Julia ;
Kolek, Martin ;
Jalkanen, Kirsi ;
Winter, Martin ;
Bieker, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (18) :11152-11162
[9]   Mitigating self-discharge and improving the performance of Mg-S battery in Mg[B(hfip)4]2 electrolyte with a protective interlayer [J].
Bosubabu, Dasari ;
Li, Zhenyou ;
Meng, Zhen ;
Wang, Li-Ping ;
Fichtner, Maximilian ;
Zhao-Karger, Zhirong .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (44) :25150-25159
[10]   Engineering nanoreactors for metal-chalcogen batteries [J].
Boyjoo, Yash ;
Shi, Haodong ;
Tian, Qiang ;
Liu, Shaomin ;
Liang, Ji ;
Wu, Zhong-Shuai ;
Jaroniec, Mietek ;
Liu, Jian .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (02) :540-575