Comparison of deep learning-based denoising methods in cardiac SPECT

被引:13
作者
Sohlberg, Antti [1 ,2 ]
Kangasmaa, Tuija [3 ]
Constable, Chris [2 ]
Tikkakoski, Antti [4 ]
机构
[1] Paijat Hame Cent Hosp, Dept Clin Physiol & Nucl Med, Lahti, Finland
[2] HERMES Med Solut, Stockholm, Sweden
[3] Vaasa Cent Hosp, Dept Clin Physiol & Nucl Med, Vaasa, Finland
[4] Tampere Univ Hosp, Clin Physiol & Nucl Med, Tampere, Finland
关键词
Cardiac SPECT; Denoising; Deep learning; QUANTIFICATION;
D O I
10.1186/s40658-023-00531-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundMyocardial perfusion SPECT (MPS) images often suffer from artefacts caused by low-count statistics. Poor-quality images can lead to misinterpretations of perfusion defects. Deep learning (DL)-based methods have been proposed to overcome the noise artefacts. The aim of this study was to investigate the differences among several DL denoising models.MethodsConvolution neural network (CNN), residual neural network (RES), UNET and conditional generative adversarial neural network (cGAN) were generated and trained using ordered subsets expectation maximization (OSEM) reconstructed MPS studies acquired with full, half, three-eighths and quarter acquisition time. All DL methods were compared against each other and also against images without DL-based denoising. Comparisons were made using half and quarter time acquisition data. The methods were evaluated in terms of noise level (coefficient of variation of counts, CoV), structural similarity index measure (SSIM) in the myocardium of normal patients and receiver operating characteristic (ROC) analysis of realistic artificial perfusion defects inserted into normal MPS scans. Total perfusion deficit scores were used as observer rating for the presence of a perfusion defect.ResultsAll the DL denoising methods tested provided statistically significantly lower noise level than OSEM without DL-based denoising with the same acquisition time. CoV of the myocardium counts with the different DL noising methods was on average 7% (CNN), 8% (RES), 7% (UNET) and 14% (cGAN) lower than with OSEM. All DL methods also outperformed full time OSEM without DL-based denoising in terms of noise level with both half and quarter acquisition time, but this difference was not statistically significant. cGAN had the lowest CoV of the DL methods at all noise levels. Image quality and polar map uniformity of DL-denoised images were also better than reduced acquisition time OSEM's. SSIM of the reduced acquisition time OSEM was overall higher than with the DL methods. The defect detection performance of full time OSEM measured as area under the ROC curve (AUC) was on average 0.97. Half time OSEM, CNN, RES and UNET provided equal or nearly equal AUC. However, with quarter time data CNN, RES and UNET had an average AUC of 0.93, which was lower than full time OSEM's AUC, but equal to quarter acquisition time OSEM. cGAN did not achieve the defect detection performance of the other DL methods. Its average AUC with half time data was 0.94 and 0.91 with quarter time data.ConclusionsDL-based denoising effectively improved noise level with slightly lower perfusion defect detection performance than full time reconstruction. cGAN achieved the lowest noise level, but at the same time the poorest defect detection performance among the studied DL methods.
引用
收藏
页数:15
相关论文
共 23 条
[1]   IQ SPECT Allows a Significant Reduction in Administered Dose and Acquisition Time for Myocardial Perfusion Imaging: Evidence from a Phantom Study [J].
Caobelli, Federico ;
Kaiser, Stefano Ren ;
Thackeray, James T. ;
Bengel, Frank M. ;
Chieregato, Matteo ;
Soffientini, Alberto ;
Pizzocaro, Claudio ;
Savelli, Giordano ;
Galelli, Marco ;
Guerra, Ugo Paolo .
JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (12) :2064-2070
[2]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[3]  
GERMANO G, 1995, J NUCL MED, V36, P2138
[4]   Iterative PET Image Reconstruction Using Convolutional Neural Network Representation [J].
Gong, Kuang ;
Guan, Jiahui ;
Kim, Kyungsang ;
Zhang, Xuezhu ;
Yang, Jaewon ;
Seo, Youngho ;
El Fakhri, Georges ;
Qi, Jinyi ;
Li, Quanzheng .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (03) :675-685
[5]   Penalized PET Reconstruction Using Deep Learning Prior and Local Linear Fitting [J].
Kim, Kyungsang ;
Wu, Dufan ;
Gong, Kuang ;
Dutta, Joyita ;
Kim, Jong Hoon ;
Son, Young Don ;
Kim, Hang Keun ;
El Fakhri, Georges ;
Li, Quanzheng .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) :1478-1487
[6]   Low-dose PET image noise reduction using deep learning: application to cardiac viability FDG imaging in patients with ischemic heart disease [J].
Ladefoged, Claes Nohr ;
Hasbak, Philip ;
Hornnes, Charlotte ;
Hojgaard, Liselotte ;
Andersen, Flemming Littrup .
PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (05)
[7]   Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging [J].
Liu, Junchi ;
Yang, Yongyi ;
Wernick, Miles N. ;
Pretorius, P. Hendrik ;
King, Michael A. .
MEDICAL PHYSICS, 2021, 48 (01) :156-168
[8]   An investigation of quantitative accuracy for deep learning based denoising in oncological PET [J].
Lu, Wenzhuo ;
Onofrey, John A. ;
Lu, Yihuan ;
Shi, Luyao ;
Ma, Tianyu ;
Liu, Yaqiang ;
Liu, Chi .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (16)
[9]   Filtering in SPECT Image Reconstruction [J].
Lyra, Maria ;
Ploussi, Agapi .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2011, 2011
[10]   Optimization of regularization of attenuation and scatter-corrected 99mTc cardiac SPECT studies for defect detection using hybrid images [J].
Narayanan, MV ;
King, MA ;
Leppo, J ;
Dahlberg, S ;
Pretorius, PH ;
Gifford, HC .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2001, 48 (03) :785-789