Suzuki type estimates for exponentiated sums and generalized Lie-Trotter formulas in JB-algebras

被引:2
作者
Chehade, Sarah [1 ]
Wang, Shuzhou [2 ]
Wang, Zhenhua [2 ,3 ]
机构
[1] Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Computat Sci Grp, Oak Ridge, TN 37831 USA
[2] Univ Georgia, Dept Math, Athens, GA 30602 USA
[3] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
关键词
Lie-Trotter formula; Suzuki approximation; JB-algebra; Jordan-Banach algebra;
D O I
10.1016/j.laa.2023.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lie-Trotter-Suzuki product formulas are ubiquitous in quantum mechanics, computing, and simulations. Approximating exponentiated sums with such formulas are investigated in the JB-algebraic setting. We show that the Suzuki type approximation for exponentiated sums holds in JB-algebras, we give explicit estimation formulas, and we deduce three generalizations of Lie-Trotter formulas for arbitrary number elements in such algebras. We also extended the Lie-Trotter formulas in a Jordan Banach algebra from three elements to an arbitrary number of elements. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:156 / 169
页数:14
相关论文
共 7 条
[1]  
Alfsen E. M., 2003, MATH THEORY
[2]  
Escolano GM, 2023, Arxiv, DOI arXiv:2305.05530
[3]  
Hanche-Olsen H., 1984, Jordan operator algebras
[4]   TRANSFER-MATRIX METHOD AND MONTE-CARLO SIMULATION IN QUANTUM SPIN SYSTEMS [J].
SUZUKI, M .
PHYSICAL REVIEW B, 1985, 31 (05) :2957-2965
[5]   GENERALIZED TROTTERS FORMULA AND SYSTEMATIC APPROXIMANTS OF EXPONENTIAL OPERATORS AND INNER DERIVATIONS WITH APPLICATIONS TO MANY-BODY PROBLEMS [J].
SUZUKI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 51 (02) :183-190
[6]  
von Neumann J., 1993, The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers, P298
[7]  
WRIGHT JDM, 1977, MICH MATH J, V24, P291