Relativistic second-order dissipative and anisotropic fluid dynamics in the relaxation-time approximation for an ideal gas of massive particles

被引:3
作者
Ambrus, Victor E. [1 ]
Molnar, Etele [1 ,2 ]
Rischke, Dirk H. [2 ,3 ,4 ]
机构
[1] West Univ Timisoara, Dept Phys, Bd Vasile Parvan 4, Timisoara 300223, Romania
[2] Univ Wroclaw, Incubator Sci Excellence, Ctr Simulat Superdense Fluids, Pl M Borna 9, PL-50204 Wroclaw, Poland
[3] Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany
[4] Helmholtz Res Acad Hesse FAIR, Campus Riedberg,Max von Laue Str 12, D-60438 Frankfurt, Germany
关键词
D O I
10.1103/PhysRevD.109.076001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we study all transport coefficients of second-order dissipative fluid dynamics derived by relaxation-time approximation for the collision integral. These transport coefficients are computed for a classical ideal gas of massive particles, with and without taking into account the conservation of intrinsic quantum numbers. Through rigorous comparison between kinetic theory, second-order dissipative fluid dynamics, and leading-order anisotropic fluid dynamics for a (0 thorn 1)-dimensional boost-invariant flow scenario, we show that both fluid-dynamical theories describe the early far-from-equilibrium stage of the expansion reasonably well.
引用
收藏
页数:33
相关论文
共 59 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]   Quasiparticle theory of transport coefficients for hadronic matter at finite temperature and baryon density [J].
Albright, M. ;
Kapusta, J. I. .
PHYSICAL REVIEW C, 2016, 93 (01)
[3]   Relativistic anisotropic hydrodynamics [J].
Alqahtani, Mubarak ;
Nopoush, Mohammad ;
Strickland, Michael .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2018, 101 :204-248
[4]   Fast kinetic simulator for relativistic matter [J].
Ambrus, V. E. ;
Bazzanini, L. ;
Gabbana, A. ;
Simeoni, D. ;
Succi, S. ;
Tripiccione, R. .
NATURE COMPUTATIONAL SCIENCE, 2022, 2 (10) :641-654
[5]   Transport coefficients of second-order relativistic fluid dynamics in the relaxation-time approximation [J].
Ambrus, Victor E. ;
Molnar, Etele ;
Rischke, Dirk H. .
PHYSICAL REVIEW D, 2022, 106 (07)
[6]   High-order quadrature-based lattice Boltzmann models for the flow of ultrarelativistic rarefied gases [J].
Ambrus, Victor E. ;
Blaga, Robert .
PHYSICAL REVIEW C, 2018, 98 (03)
[7]  
Ambrus Victor E., 2023, Non-conformal Bjorken flow: Secondorder viscous hydrodynamics, anisotropic hydrodynamics and RTA kinetic theory, DOI [10.24433/CO.1942625.v2, DOI 10.24433/CO.1942625.V2]
[8]  
Amos D.E., 1983, Computation of Bessel functions of complex argument and large order, V5, DOI [DOI 10.2172/5903937, /10.2172/5903937]
[9]   A PORTABLE FORTRAN SUBROUTINE FOR THE BICKLEY FUNCTIONS KIN(X) [J].
AMOS, DE .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1983, 9 (04) :480-493
[10]   RELATIVISTIC RELAXATION-TIME MODEL FOR BOLTZMANN-EQUATION [J].
ANDERSON, JL ;
WITTING, HR .
PHYSICA, 1974, 74 (03) :466-488