Tumor microenvironment-responsive multifunctional nanoplatform with selective toxicity for MRI-guided photothermal/photodynamic/nitric oxide combined cancer therapy

被引:20
作者
Zhou, Shihao [1 ]
Wu, Chengguang [1 ]
Shen, Pengfei [2 ]
Zhou, Liming [1 ]
Wang, Wenbo [1 ]
Lv, Kai [1 ]
Wei, Chengxiu [1 ]
Li, Guowei [2 ]
Ma, Dong [1 ,3 ]
Xue, Wei [1 ]
机构
[1] Jinan Univ, Key Lab Biomat Guangdong Higher Educ Inst, Guangdong Prov Engn & Technol Res Ctr Drug Carrier, Dept Biomed Engn, Guangzhou 510632, Peoples R China
[2] Jinan Univ, Affiliated Hosp 1, Guangzhou 510630, Guangdong, Peoples R China
[3] Jinan Univ, MOE Key Lab Tumor Mol Biol, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
Multifunctional nanoplatform; Selective toxicity; Combination therapy; Covalent organic framework; NITRIC-OXIDE; HYDROGEN-PEROXIDE; NANOPARTICLES; RELEASE; DECOMPOSITION; COMBINATION; DELIVERY; HYPOXIA; SURFACE;
D O I
10.1016/j.cej.2024.148618
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The trade-off in nanomaterials-based cancer therapy between safety and therapeutic efficacy remains a significant challenge to overcome in the long run. In this context, we have designed a tumor microenvironment (pH, H2O2)-responsive multifunctional nanoplatform with a core-shell structure (C/B@M) for magnetic resonance imaging (MRI)-guided photothermal (PTT) /photodynamic (PDT) /nitric oxide (NO) combined cancer therapy. The pH/H2O2-responsive MnO2 coating not only shields from light, preventing the premature release of singlet oxygen, which is non-specifically toxic, but also generates O2 to alleviate tumor hypoxia, enhancing PDT efficacy. The degradation of MnO2 to Mn2+ aids in precise tumor localization for MRI-guided irradiation, thereby reducing the risk of inadvertent damage to normal cells. Once the shell is degraded within the tumor, the covalent organic framework (COF) core, crafted from porphyrin, produces singlet oxygen and thermal effects upon exposure to infrared light irradiation (660 nm). Concurrently, BNN6 decomposes under photothermal stimulation, releasing NO for gas therapy, which further ameliorates the tumor's hypoxic microenvironment, enabling MRI imaging-guided multimodal combined tumor treatments. The introduced C/B@M, with its selective toxicity, offers a novel approach to designing multifunctional nanoplatforms, addressing the intrinsic balance between safety and tumor-killing efficacy.
引用
收藏
页数:12
相关论文
共 64 条
[1]   ROS-augmented and tumor-microenvironment responsive biodegradable nanoplatform for enhancing chemo-sonodynamic therapy [J].
An, Jie ;
Hu, Yong-Guo ;
Cheng, Kai ;
Li, Cheng ;
Hou, Xiao-Lin ;
Wang, Gang-Lin ;
Zhang, Xiao-Shuai ;
Liu, Bo ;
Zhao, Yuan-Di ;
Zhang, Ming-Zhen .
BIOMATERIALS, 2020, 234
[2]   Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization [J].
Celli, Jonathan P. ;
Spring, Bryan Q. ;
Rizvi, Imran ;
Evans, Conor L. ;
Samkoe, Kimberley S. ;
Verma, Sarika ;
Pogue, Brian W. ;
Hasan, Tayyaba .
CHEMICAL REVIEWS, 2010, 110 (05) :2795-2838
[3]   Understanding the Role of Surface Charges in Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell Surface with a I2/KI Etchant [J].
Cho, Eun Chul ;
Xie, Jingwei ;
Wurm, Patricia A. ;
Xia, Younan .
NANO LETTERS, 2009, 9 (03) :1080-1084
[4]   Tailoring nitric oxide release with additive manufacturing to create antimicrobial surfaces [J].
Chug, Manjyot Kaur ;
Bachtiar, Emilio ;
Narwold, Nicholas ;
Gall, Ken ;
Brisbois, Elizabeth J. .
BIOMATERIALS SCIENCE, 2021, 9 (08) :3100-3111
[5]   A pH-Responsive Carrier System that Generates NO Bubbles to Trigger Drug Release and Reverse P-Glycoprotein-Mediated Multidrug Resistance [J].
Chung, Ming-Fan ;
Liu, Hung-Yi ;
Lin, Kun-Ju ;
Chia, Wei-Tso ;
Sung, Hsing-Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (34) :9890-9893
[6]   Application of Mitochondrially Targeted Nanoconstructs to Neoadjuvant X-ray-Induced Photodynamic Therapy for Rectal Cancer [J].
Deng, Wei ;
McKelvey, Kelly J. ;
Guller, Anna ;
Fayzullin, Alexey ;
Campbell, Jared M. ;
Clement, Sandhya ;
Habibalahi, Abbas ;
Wargocka, Zofia ;
Liang, Liuen ;
Shen, Chao ;
Howell, Viive Maarika ;
Engel, Alexander Frank ;
Goldys, Ewa M. .
ACS CENTRAL SCIENCE, 2020, 6 (05) :715-726
[7]   Hydrogen peroxide decomposition on manganese oxide (pyrolusite): Kinetics, intermediates, and mechanism [J].
Do, Si-Hyun ;
Batchelor, Bill ;
Lee, Hong-Kyun ;
Kong, Sung-Ho .
CHEMOSPHERE, 2009, 75 (01) :8-12
[8]   Nanoparticle Size Effects in Biomedical Applications [J].
Dolai, Jayanta ;
Mandal, Kuheli ;
Jana, Nikhil R. .
ACS APPLIED NANO MATERIALS, 2021, 4 (07) :6471-6496
[9]   2D Piezoelectric Bi2MoO6 Nanoribbons for GSH-Enhanced Sonodynamic Therapy [J].
Dong, Yushan ;
Dong, Shuming ;
Liu, Bin ;
Yu, Chenghao ;
Liu, Jing ;
Yang, Dan ;
Yang, Piaoping ;
Lin, Jun .
ADVANCED MATERIALS, 2021, 33 (51)
[10]   Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine [J].
Du, Jin-Zhi ;
Li, Hong-Jun ;
Wang, Jun .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (11) :2848-2856