GA-Net: Ghost convolution adaptive fusion skin lesion segmentation network

被引:14
作者
Zhou, Longsong [1 ,3 ]
Liang, Liming [1 ]
Sheng, Xiaoqi [2 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Elect Engn & Automat, Ganzhou 341000, Jiangxi, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
[3] Tongling Nonferrous Met Grp Co Ltd, Jinguan Copper Branch, Tongling 244002, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Skin lesion segmentation; Ghost convolution; Adaptive fusion module; Bilateral attention module; Layer feature fusion;
D O I
10.1016/j.compbiomed.2023.107273
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Automatic segmentation of skin lesions is a pivotal task in computer-aided diagnosis, playing a crucial role in the early detection and treatment of skin cancer. Despite the existence of numerous deep learning-based segmentation methods, the extraction of lesion features remains inadequate as a result of the segmentation process. Consequently, skin lesion image segmentation continues to face challenges regarding missing detailed information and inaccurate segmentation of the lesion region. In this paper, we propose a ghost convolution adaptive fusion network for skin lesion segmentation. First, the neural network incorporates a ghost module instead of the ordinary convolution layer, generating a rich skin lesion feature map for comprehensive target feature extraction. Subsequently, the network employs an adaptive fusion module and bilateral attention module to connect the encoding and decoding layers, facilitating the integration of shallow and deep network information. Moreover, multi-level output patterns are used for pixel prediction. Layer feature fusion effectively combines output features of different scales, thus improving image segmentation accuracy. The proposed network was extensively evaluated on three publicly available datasets: ISIC2016, ISIC2017, and ISIC2018. The experimental results demonstrated accuracies of 96.42%, 94.07%, and 95.03%, and kappa coefficients of 90.41%, 81.08%, and 86.96%, respectively. The overall performance of our network surpassed that of existing networks. Simulation experiments further revealed that the ghost convolution adaptive fusion network exhibited superior segmentation results for skin lesion images, offering new possibilities for the diagnosis of skin diseases.
引用
收藏
页数:16
相关论文
共 52 条
[1]   Multiscale Attention U-Net for Skin Lesion Segmentation [J].
Alahmadi, Mohammad D. .
IEEE ACCESS, 2022, 10 :59145-59154
[2]   Hyperspectral imaging for tumor segmentation on pigmented skin lesions [J].
Aloupogianni, Eleni ;
Ichimura, Takaya ;
Hamada, Mei ;
Ishikawa, Masahiro ;
Murakami, Takuo ;
Sasaki, Atsushi ;
Nakamura, Koichiro ;
Kobayashi, Naoki ;
Obi, Takashi .
JOURNAL OF BIOMEDICAL OPTICS, 2022, 27 (10)
[3]   Modified U-NET Architecture for Segmentation of Skin Lesion [J].
Anand, Vatsala ;
Gupta, Sheifali ;
Koundal, Deepika ;
Nayak, Soumya Ranjan ;
Barsocchi, Paolo ;
Bhoi, Akash Kumar .
SENSORS, 2022, 22 (03)
[4]   DermoNet: densely linked convolutional neural network for efficient skin lesion segmentation [J].
Baghersalimi, Saleh ;
Bozorgtabar, Behzad ;
Schmid-Saugeon, Philippe ;
Ekenel, Hazim Kemal ;
Thiran, Jean-Philippe .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2019,
[5]   MFSNet: A multi focus segmentation network for skin lesion segmentation [J].
Basak, Hritam ;
Kundu, Rohit ;
Sarkar, Ram .
PATTERN RECOGNITION, 2022, 128
[6]   Fully Convolutional Network for Liver Segmentation and Lesions Detection [J].
Ben-Cohen, Avi ;
Diamant, Idit ;
Klang, Eyal ;
Amitai, Michal ;
Greenspan, Hayit .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :77-85
[7]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[8]  
Codella NCF, 2018, I S BIOMED IMAGING, P168, DOI 10.1109/ISBI.2018.8363547
[9]   Ms RED: A novel multi-scale residual encoding and decoding network for skin lesion segmentation [J].
Dai, Duwei ;
Dong, Caixia ;
Xu, Songhua ;
Yan, Qingsen ;
Li, Zongfang ;
Zhang, Chunyan ;
Luo, Nana .
MEDICAL IMAGE ANALYSIS, 2022, 75
[10]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773