3D Modeling and Numerical Investigation of Electrochemical CO2 Reduction in Microfluidic Flow Cells

被引:2
作者
Liu, Shiyuan [1 ]
Zhang, Ce [1 ]
Yao, Wei [1 ]
机构
[1] China Acad Space Technol, Qian Xuesen Lab Space Technol, 104 Youyi Rd, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; concentration polarization; gas diffusion electrodes; microfluidics; reduction; 3D modeling; ELECTRO-REDUCTION; ELECTROREDUCTION; ELECTROCATALYSIS; ETHYLENE; REACTOR;
D O I
10.1002/ente.202300119
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrochemical CO2$\left(\text{CO}\right)_{2}$ reduction reaction is considered as a promising technical route for carbon-neutral and mitigating greenhouse effect. CO2$\left(\text{CO}\right)_{2}$ concentration limitation hinders the performance of state-of-the-art electrochemical CO2$\left(\text{CO}\right)_{2}$ reduction reaction. Increasing the mass transfer of reactants on the catalyst surface by flow cell design and porous electrode design has become the mainstream approach. Studying the distribution of mass in reaction region is important and beneficial to optimizing and designing efficient reactors. Herein, electrochemical CO2$\left(\text{CO}\right)_{2}$ reduction reaction reactors with micrometer and millimeter channels are simulated and systemically analyzed. The results reveal the microfluidic design can improve the mass transfer and reactant gas flow in the porous layer to reduce the concentration polarization and ensure uniform local potential of the reactor. A micrometer channel model requires only 10 sccm inlet gas supply to achieve the same current density compared to a millimeter flow channel with an inlet flow of 20 sccm. This study proposes a reasonable flow channel reactor to reduce gas stagnant region, which not only enhances the CO2$\left(\text{CO}\right)_{2}$ reduction performance effectively with evident potential dependence, but also guides the design for large-scale reactors.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Economically viable CO2 electroreduction embedded within ethylene oxide manufacturing [J].
Barecka, Magda H. ;
Ager, Joel W. ;
Lapkin, Alexei A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (03) :1530-1543
[2]   Analytical modelling of CO2 reduction in gas-diffusion electrode catalyst layers [J].
Blake, J. W. ;
Padding, J. T. ;
Haverkort, J. W. .
ELECTROCHIMICA ACTA, 2021, 393
[3]   Continuum Modeling of Porous Electrodes for Electrochemical Synthesis [J].
Bui, Justin C. ;
Lees, Eric W. ;
Pant, Lalit M. ;
Zenyuk, Iryna V. ;
Bell, Alexis T. ;
Weber, Adam Z. .
CHEMICAL REVIEWS, 2022, 122 (12) :11022-11084
[4]   HIGH-RATE GAS-PHASE CO2 REDUCTION TO ETHYLENE AND METHANE USING GAS-DIFFUSION ELECTRODES [J].
COOK, RL ;
MACDUFF, RC ;
SAMMELLS, AF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (02) :607-608
[5]   CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2 [J].
de Arquer, F. Pelayo Garcia ;
Cao-Thang Dinh ;
Ozden, Adnan ;
Wicks, Joshua ;
McCallum, Christopher ;
Kirmani, Ahmad R. ;
Dae-Hyun Nam ;
Gabardo, Christine ;
Seifitokaldani, Ali ;
Wang, Xue ;
Li, Yuguang C. ;
Li, Fengwang ;
Edwards, Jonathan ;
Richter, Lee J. ;
Thorpe, Steven J. ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2020, 367 (6478) :661-+
[6]   Mathematical Modeling of CO2 Reduction to CO in Aqueous Electrolytes I. Kinetic Study on Planar Silver and Gold Electrodes [J].
Delacourt, Charles ;
Ridgway, Paul L. ;
Newman, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (12) :B1902-B1910
[7]   Modeling and Numerical Investigation of the Performance of Gas Diffusion Electrodes for the Electrochemical Reduction of Carbon Dioxide to Methanol [J].
El-Shafie, Omnia A. ;
El-Maghraby, Rehab M. ;
Albo, Jonathan ;
Fateen, Seif-Eddeen K. ;
Abdelghany, Amr .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (47) :20929-20942
[8]   Probing the Catalytically Active Region in a Nanoporous Gold Gas Diffusion Electrode for Highly Selective Carbon Dioxide Reduction [J].
Fenwick, Aidan Q. ;
Welch, Alex J. ;
Li, Xueqian ;
Sullivan, Ian ;
DuChene, Joseph S. ;
Xiang, Chengxiang ;
Atwater, Harry A. .
ACS ENERGY LETTERS, 2022, 7 (02) :871-879
[9]   Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials [J].
Garg, Sahil ;
Li, Mengran ;
Weber, Adam Z. ;
Ge, Lei ;
Li, Liye ;
Rudolph, Victor ;
Wang, Guoxiong ;
Rufford, Thomas E. .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) :1511-1544
[10]   Optimization of Parallel and Serpentine Configurations for Polymer Electrolyte Membrane Fuel Cells [J].
Guo, N. ;
Leu, M. C. ;
Koylu, U. O. .
FUEL CELLS, 2014, 14 (06) :876-885