Approximation by modified q-Gamma type operators in a polynomial weighted space

被引:3
作者
Singh, Jitendra Kumar [1 ]
Agrawal, Purshottam Narain [1 ]
Kajla, Arun [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Cent Univ Haryana, Dept Math, Jant, Haryana, India
关键词
Gamma type operators; modulus of continuity; polynomial weighted space; CONVERGENCE;
D O I
10.1002/mma.8687
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research article, we construct a q$$ q $$-analogue of the operators defined by Betus and Usta (2020) and study approximation properties of these operators in a polynomial weighted space. Further, we modify these operators to study the approximation properties for differentiable functions in the same space and show that the modified operators give a better rate of convergence.
引用
收藏
页码:3223 / 3236
页数:14
相关论文
共 50 条
[31]   Approximation properties for King's type modified q-Bernstein-Kantorovich operators [J].
Mursaleen, M. ;
Khan, Faisal ;
Khan, Asif .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) :5242-5252
[32]   Approximation properties of modified Jain-Gamma operators [J].
Erdogan, S. ;
Olgun, A. .
CARPATHIAN MATHEMATICAL PUBLICATIONS, 2021, 13 (03) :651-665
[33]   Approximation properties of modified Gamma operators preserving tv [J].
Lipi, Km ;
Deo, Naokant .
ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (02)
[34]   Approximation by Jakimovski–Leviatan-beta operators in weighted space [J].
M. Nasiruzzaman ;
M. Mursaleen .
Advances in Difference Equations, 2020
[35]   On statistical approximation properties of Kantorovich type q-Bernstein operators [J].
Dalmanoglu, Oezge ;
Dogru, Oguen .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) :760-771
[36]   Approximation of functions by a new class of Gamma type operators; theory and applications [J].
Ozcelik, Reyhan ;
Kara, Emrah Evren ;
Usta, Fuat .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (01) :247-264
[37]   Approximation properties of (p, q)-Bernstein type operators [J].
Finta, Zoltan .
ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (02) :222-232
[38]   Approximation by q-Baskakov Durrmeyer type operators [J].
Agrawal, P. N. ;
Kumar, A. Sathish .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2014, 63 (01) :73-89
[39]   Approximation by Kantorovich type q-Bernstein operators [J].
Dalmanoglu, Ozge .
APPLIED MATHEMATICS FOR SCIENCE AND ENGINEERING, 2007, :113-+
[40]   APPROXIMATION PROPERTIES FOR MODIFIED q-BERNSTEIN-KANTOROVICH OPERATORS [J].
Mursaleen, M. ;
Khan, Faisal ;
Khan, Asif .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (09) :1178-1197