A numerical implementation for the high-order 2D virtual element method in MATLAB

被引:3
|
作者
Herrera, Cesar [1 ]
Corrales-Barquero, Ricardo [1 ]
Arroyo-Esquivel, Jorge [2 ]
Calvo, Juan G. [3 ]
机构
[1] Univ Costa Rica, Escuela Matemat, San Jose, Costa Rica
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] Univ Costa Rica, CIMPA Escuela Matemat, San Jose, Costa Rica
关键词
Virtual element methods; Polygonal mesh; MATLAB implementation; Nodal elliptic problems;
D O I
10.1007/s11075-022-01361-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a numerical implementation for the Virtual Element Method that incorporates high order spaces. We include all the required computations in order to assemble the stiffness and mass matrices, and right hand side. Convergence of the method is verified for different polygonal partitions. An specific mesh-free application that allows to approximate harmonic functions is discussed, which is based on high-order projections onto polynomial spaces of degree k; this approach only requires to solve a k(k - 1)/2 linear system, reducing significantly the number of operations compared to usual finite or virtual element methods, and can be modified for different virtual spaces and elliptic partial differential equations.
引用
收藏
页码:1707 / 1721
页数:15
相关论文
共 50 条
  • [41] Analysis of Numerical Dispersion in the High-Order 2-D WLP-FDTD Method
    Chen, Wei-Jun
    Quan, Jun
    Long, Shi-Yu
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2015, 55 : 7 - 13
  • [42] Initial Stress Formulae for High-Order Numerical Manifold Method and High-Order DDA
    Su, Haidong
    Xie, Xiaoling
    ANALYSIS OF DISCONTINUOUS DEFORMATION: NEW DEVELOPMENTS AND APPLICATIONS, 2010, : 247 - 254
  • [43] Ellipticity controlled high-order harmonic generation in 2D materials
    Hollinger, Richard
    Harshitha, N. G.
    Korolev, Viacheslav
    Gan, Ziyang
    George, Antony
    Shumakova, Valentina
    Zuerch, Michael
    Vogl, Tobias
    Pugzlys, Audrius
    Baltuska, Andrius
    Ellenberger, Falk
    Spielmann, Christian
    Turchanin, Andrey
    Kartashov, Daniil
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [44] High-order schemes for 2D unsteady biogeochemical ocean models
    Ueckermann, Mattheus P.
    Lermusiaux, Pierre F. J.
    OCEAN DYNAMICS, 2010, 60 (06) : 1415 - 1445
  • [45] ADER: A High-Order Approach for Linear Hyperbolic Systems in 2D
    Schwartzkopff, T.
    Munz, C. D.
    Toro, E. F.
    JOURNAL OF SCIENTIFIC COMPUTING, 2002, 17 (1-4) : 231 - 240
  • [46] High-order harmonic generation in 2D transition metal disulphides
    Iglesias, J. M.
    Pascual, E.
    Martin, M. J.
    Rengel, R.
    APPLIED PHYSICS LETTERS, 2021, 119 (01)
  • [47] ADER: A High-Order Approach for Linear Hyperbolic Systems in 2D
    T. Schwartzkopff
    C. D. Munz
    E. F. Toro
    Journal of Scientific Computing, 2002, 17 : 231 - 240
  • [48] Boundary element analysis of 2D thin walled structures with high-order geometry elements using transformation
    Zhang, Yao-Ming
    Gu, Yan
    Chen, Jeng-Tzong
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2011, 35 (03) : 581 - 586
  • [49] Magnetic high-order topological insulator in 2D layered CrOCl
    Guo, Zhenzhou
    Liu, Ying
    Jiang, Haoqian
    Zhang, Xiaoming
    Jin, Lei
    Liu, Cong
    Liu, Guodong
    MATERIALS TODAY PHYSICS, 2023, 36
  • [50] High-order schemes for 2D unsteady biogeochemical ocean models
    Mattheus P. Ueckermann
    Pierre F. J. Lermusiaux
    Ocean Dynamics, 2010, 60 : 1415 - 1445