A numerical implementation for the high-order 2D virtual element method in MATLAB

被引:3
|
作者
Herrera, Cesar [1 ]
Corrales-Barquero, Ricardo [1 ]
Arroyo-Esquivel, Jorge [2 ]
Calvo, Juan G. [3 ]
机构
[1] Univ Costa Rica, Escuela Matemat, San Jose, Costa Rica
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] Univ Costa Rica, CIMPA Escuela Matemat, San Jose, Costa Rica
关键词
Virtual element methods; Polygonal mesh; MATLAB implementation; Nodal elliptic problems;
D O I
10.1007/s11075-022-01361-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a numerical implementation for the Virtual Element Method that incorporates high order spaces. We include all the required computations in order to assemble the stiffness and mass matrices, and right hand side. Convergence of the method is verified for different polygonal partitions. An specific mesh-free application that allows to approximate harmonic functions is discussed, which is based on high-order projections onto polynomial spaces of degree k; this approach only requires to solve a k(k - 1)/2 linear system, reducing significantly the number of operations compared to usual finite or virtual element methods, and can be modified for different virtual spaces and elliptic partial differential equations.
引用
收藏
页码:1707 / 1721
页数:15
相关论文
共 50 条
  • [1] A numerical implementation for the high-order 2D virtual element method in MATLAB
    César Herrera
    Ricardo Corrales-Barquero
    Jorge Arroyo-Esquivel
    Juan G. Calvo
    Numerical Algorithms, 2023, 92 : 1707 - 1721
  • [2] A High-Order Shifted Boundary Virtual Element Method for Poisson Equations on 2D Curved Domains
    Hou, Yongli
    Liu, Yi
    Wang, Yanqiu
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)
  • [3] High-order numerical method for 2D biharmonic interface problem
    Tavakoli Tameh, Mahboubeh
    Shakeri, Fatemeh
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (10) : 1662 - 1678
  • [4] High-order Virtual Element Method on polyhedral meshes
    da Veiga, L. Beirao
    Dassi, F.
    Russo, A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (05) : 1110 - 1122
  • [5] Benchmark Session: The 2D Hybrid High-Order Method
    Di Pietro, Daniele A.
    Krell, Stella
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-METHODS AND THEORETICAL ASPECTS, FVCA 8, 2017, 199 : 91 - 106
  • [6] A High-Order Compact 2D FDFD Method for Waveguides
    Zheng, Gang
    Wang, Bing-Zhong
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2012, 2012
  • [7] A high-order numerical method for solving the 2D fourth-order reaction-diffusion equation
    Haixiang Zhang
    Xuehua Yang
    Da Xu
    Numerical Algorithms, 2019, 80 : 849 - 877
  • [8] A high-order numerical method for solving the 2D fourth-order reaction-diffusion equation
    Zhang, Haixiang
    Yang, Xuehua
    Xu, Da
    NUMERICAL ALGORITHMS, 2019, 80 (03) : 849 - 877
  • [9] High-order 3D virtual element method for linear and nonlinear elasticity
    Xu, Bing-Bing
    Fan, Wei-Long
    Wriggers, Peter
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 431
  • [10] A high-order discontinuous Galerkin method for 2D incompressible flows
    Liu, JG
    Shu, CW
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (02) : 577 - 596