STABILIZATION IN DEGENERATE PARABOLIC EQUATIONS IN DIVERGENCE FORM AND APPLICATION TO CHEMOTAXIS SYSTEMS

被引:0
|
作者
Ishida, Sachiko [1 ]
Yokota, Tomomi [2 ]
机构
[1] Chiba Univ, Grad Sch Sci, Dept Math & Informat, 1-33 Yayoi Cho, Chiba 2638522, Japan
[2] Tokyo Univ Sci, Dept Math, 1-3 Kagurazaka,Shinjuku Ku, Tokyo 1628601, Japan
来源
ARCHIVUM MATHEMATICUM | 2023年 / 59卷 / 02期
关键词
stabilization; degenerate diffusion; Keller-Segel systems; KELLER-SEGEL SYSTEM; TIME BLOW-UP; BOUNDEDNESS;
D O I
10.5817/AM2023-2-181
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.
引用
收藏
页码:181 / 189
页数:9
相关论文
共 50 条