Performance comparison of optimization methods on variational quantum algorithms

被引:42
作者
Bonet-Monroig, Xavier [1 ]
Wang, Hao [2 ]
Vermetten, Diederick [2 ]
Senjean, Bruno [1 ,3 ]
Moussa, Charles [2 ]
Back, Thomas [2 ]
Dunjko, Vedran [2 ]
O'Brien, Thomas E. [1 ,4 ]
机构
[1] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
[2] Leiden Univ, Leiden Inst Adv Comp Sci, NL-2333 CA Leiden, Netherlands
[3] Univ Montpellier, ICGM, CNRS, ENSCM, F-34090 Montpellier, France
[4] Google Quantum AI, D-80636 Munich, Germany
基金
荷兰研究理事会;
关键词
COUPLED-CLUSTER THEORY; EFFICIENT; CHEMISTRY;
D O I
10.1103/PhysRevA.107.032407
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Variational quantum algorithms (VQAs) offer a promising path toward using near-term quantum hardware for applications in academic and industrial research. These algorithms aim to find approximate solutions to quantum problems by optimizing a parametrized quantum circuit using a classical optimization algorithm. A successful VQA requires fast and reliable classical optimization algorithms. Understanding and optimizing how off-the-shelf optimization methods perform in this context is important for the future of the field. In this work, we study the performance of four commonly used gradient-free optimization methods [sequential least-squares quadratic programming, constrained optimization by linear approximations, the covariance matrix adaptation evolutionary strategy (CMA-ES), and the simultaneous perturbation stochastic approximation (SPSA)] to find ground-state energies of a range of small chemistry and material science problems. We test a telescoping sampling scheme (where the accuracy of the cost-function estimate provided to the optimizer is increased as the optimization converges) for all methods, demonstrating mixed results across our range of optimizers and problems chosen. We further hyperparameter tune two of the four optimizers (CMA-ES and SPSA) across a large range of models and demonstrate that with appropriate hyperparameter tuning, CMA-ES is competitive with and sometimes outperforms SPSA (which is not observed in the absence of hyperparameter tuning). Finally, we investigate the ability of an optimizer to beat the "sampling-noise floor" given by the sampling noise of each cost-function estimate provided to the optimizer. Our results demonstrate the necessity for tailoring and hyperparameter tuning known optimization techniques for inherently noisy variational quantum algorithms and that the variational landscape that one finds in a VQA is highly problem and system dependent. This provides guidance for future implementations of these algorithms in experiments.
引用
收藏
页数:11
相关论文
共 61 条
[1]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[2]  
Auger A, 2010, GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P1611
[3]   Coupled-cluster theory in quantum chemistry [J].
Bartlett, Rodney J. ;
Musial, Monika .
REVIEWS OF MODERN PHYSICS, 2007, 79 (01) :291-352
[4]  
Bonet-Monroig Xavier, 2021, Zenodo, DOI 10.5281/ZENODO.5721349
[5]   Nearly Optimal Measurement Scheduling for Partial Tomography of Quantum States [J].
Bonet-Monroig, Xavier ;
Babbush, Ryan ;
O'Brien, Thomas E. .
PHYSICAL REVIEW X, 2020, 10 (03)
[6]   Can Single-Reference Coupled Cluster Theory Describe Static Correlation? [J].
Bulik, Ireneusz W. ;
Henderson, Thomas M. ;
Scuseria, Gustavo E. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (07) :3171-3179
[7]   Strategies for solving the Fermi-Hubbard model on near-term quantum computers [J].
Cade, Chris ;
Mineh, Lana ;
Montanaro, Ashley ;
Stanisic, Stasja .
PHYSICAL REVIEW B, 2020, 102 (23)
[8]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[9]   Benchmarking Adaptive Variational Quantum Eigensolvers [J].
Claudino, Daniel ;
Wright, Jerimiah ;
McCaskey, Alexander J. ;
Humble, Travis S. .
FRONTIERS IN CHEMISTRY, 2020, 8
[10]   Quantum Overlapping Tomography [J].
Cotler, Jordan ;
Wilczek, Frank .
PHYSICAL REVIEW LETTERS, 2020, 124 (10)