Nonexistence of solutions to fractional parabolic problem with general nonlinearities

被引:2
作者
Zhang, Lihong [1 ]
Liu, Yuchuan [1 ]
Nieto, Juan J. [2 ]
Wang, Guotao [1 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Taiyuan 030031, Shanxi, Peoples R China
[2] Univ Santiago De Compostela, Dept Estat Anal Matemat & Optimizac, CITMAga, Santiago De Compostela 15782, Spain
基金
中国国家自然科学基金;
关键词
Fractional parabolic equation; General nonlinearity; Tempered fractional Laplacian; Monotonicity; RADIAL SYMMETRY; EQUATIONS; THEOREMS;
D O I
10.1007/s12215-023-00932-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this content, we investigate a class of fractional parabolic equation with general nonlinearities partial derivative z(x,t)/partial derivative t - (Delta + lambda)(beta/2) z (x,t) = a(x(1)) f(z), where a and f are nondecreasing functions. We first prove that the monotone increasing property of the positive solutions in x1 direction. Based on this, nonexistence of the solutions are obtained by using a contradiction argument. We believe these new ideas we introduced will be applied to solve more fractional parabolic problems.
引用
收藏
页码:551 / 562
页数:12
相关论文
共 29 条
[11]   Indefinite fractional elliptic problem and Lionville theorems [J].
Chen, Wenxiong ;
Zhu, Jiuyi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) :4758-4785
[12]   Classification of nonnegative classical solutions to third-order equations [J].
Dai, Wei ;
Qin, Guolin .
ADVANCES IN MATHEMATICS, 2018, 328 :822-857
[13]   HARDY-SOBOLEV TYPE INTEGRAL SYSTEMS WITH DIRICHLET BOUNDARY CONDITIONS IN A HALF SPACE [J].
Dai, Wei ;
Liu, Zhao ;
Lu, Guozhen .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (04) :1253-1264
[14]   BOUNDARY PROBLEMS FOR THE FRACTIONAL AND TEMPERED FRACTIONAL OPERATORS [J].
Deng, Weihua ;
Li, Buyang ;
Tian, Wenyi ;
Zhang, Pingwen .
MULTISCALE MODELING & SIMULATION, 2018, 16 (01) :125-149
[15]  
Du YH, 2005, ADV DIFFERENTIAL EQU, V10, P841
[16]   Numerical Approximations for the Tempered Fractional Laplacian: Error Analysis and Applications [J].
Duo, Siwei ;
Zhang, Yanzhi .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) :569-593
[17]   Regularity theory for general stable operators: Parabolic equations [J].
Fernandez-Real, Xavier ;
Ros-Oton, Xavier .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (10) :4165-4221
[18]   AN INVERSE PROBLEM FOR A FRACTIONAL DIFFUSION EQUATION WITH FRACTIONAL POWER TYPE NONLINEARITIES [J].
Li, Li .
INVERSE PROBLEMS AND IMAGING, 2022, 16 (03) :613-624
[19]   Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality [J].
Lu, Guozhen ;
Zhu, Jiuyi .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 42 (3-4) :563-577
[20]  
Polácik P, 2005, PROG NONLIN, V64, P391