Channel Estimation for RIS-Assisted MIMO Systems in Millimeter Wave Communications

被引:4
作者
Liu, Ying [1 ]
Deng, Honggui [1 ]
Peng, Chengzuo [1 ]
机构
[1] Cent South Univ, Sch Phys & Elect, Lushan South Rd, Changsha 410083, Peoples R China
关键词
reconfigurable intelligent surface; LMMSE; channel estimation; mmWave; WIRELESS COMMUNICATIONS; MASSIVE MIMO; DESIGN;
D O I
10.3390/s23125516
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The large number of estimated parameters in a reconfigurable intelligent surface (RIS) makes it difficult to achieve accurate channel estimation accuracy in 6G. Therefore, we suggest a novel two-phase channel estimation framework for uplink multiuser communication. In this context, we propose an orthogonal matching pursuit (OMP)-based linear minimum mean square error (LMMSE) channel estimation approach. The OMP algorithm is used in the proposed algorithm to update the support set and pick the columns of the sensing matrix that are most correlated with the residual signal, which successfully reduces pilot overhead by removing redundancy. Here, we use LMMSE's advantages for handling noise to address the problem of inadequate channel estimation accuracy when the signal-to-noise ratio (SNR) is low. Simulation findings demonstrate that the proposed approach outperforms least-squares (LS), traditional OMP, and other OMP-based algorithms in terms of estimate accuracy.
引用
收藏
页数:14
相关论文
共 27 条
  • [1] RIS-Aided mmWave MIMO Channel Estimation Using Deep Learning and Compressive Sensing
    Abdallah, Asmaa
    Celik, Abdulkadir
    Mansour, Mohammad M.
    Eltawil, Ahmed M.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (05) : 3503 - 3521
  • [2] Millimeter Wave Channel Modeling and Cellular Capacity Evaluation
    Akdeniz, Mustafa Riza
    Liu, Yuanpeng
    Samimi, Mathew K.
    Sun, Shu
    Rangan, Sundeep
    Rappaport, Theodore S.
    Erkip, Elza
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) : 1164 - 1179
  • [3] Bayraktar M., 2022, P 2022 IEEE INT WORK, P1
  • [4] Chen J, 2019, Arxiv, DOI arXiv:1912.03619
  • [5] Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results
    Dai, Linglong
    Wang, Bichai
    Wang, Min
    Yang, Xue
    Tan, Jingbo
    Bi, Shuangkaisheng
    Xu, Shenheng
    Yang, Fan
    Chen, Zhi
    Di Renzo, Marco
    Chae, Chan-Byoung
    Hanzo, Lajos
    [J]. IEEE ACCESS, 2020, 8 : 45913 - 45923
  • [6] Spatially Sparse Precoding in Millimeter Wave MIMO Systems
    El Ayach, Omar
    Rajagopal, Sridhar
    Abu-Surra, Shadi
    Pi, Zhouyue
    Heath, Robert W., Jr.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (03) : 1499 - 1513
  • [7] Wireless 2.0: Toward an Intelligent Radio Environment Empowered by Reconfigurable Meta-Surfaces and Artificial Intelligence
    Gacanin, Haris
    Di Renzo, Marco
    [J]. IEEE VEHICULAR TECHNOLOGY MAGAZINE, 2020, 15 (04): : 74 - 82
  • [8] Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey
    Gong, Shimin
    Lu, Xiao
    Hoang, Dinh Thai
    Niyato, Dusit
    Shu, Lei
    Kim, Dong In
    Liang, Ying-Chang
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (04): : 2283 - 2314
  • [9] Super-Resolution Channel Estimation for MmWave Massive MIMO With Hybrid Precoding
    Hu, Chen
    Dai, Linglong
    Mir, Talha
    Gao, Zhen
    Fang, Jun
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (09) : 8954 - 8958
  • [10] Jensen TL, 2020, INT CONF ACOUST SPEE, P5000, DOI [10.1109/icassp40776.2020.9053695, 10.1109/ICASSP40776.2020.9053695]