Anatomical classification of pharyngeal and laryngeal endoscopic images using artificial intelligence

被引:10
作者
Nakajo, Keiichiro [1 ,2 ,3 ]
Ninomiya, Youichi [3 ]
Kondo, Hibiki [3 ]
Takeshita, Nobuyoshi [3 ]
Uchida, Erika [1 ]
Aoyama, Naoki [1 ]
Inaba, Atsushi [1 ]
Ikematsu, Hiroaki [1 ,3 ]
Shinozaki, Takeshi [4 ]
Matsuura, Kazuto [4 ]
Hayashi, Ryuichi [4 ]
Akimoto, Tetsuo [2 ,5 ]
Yano, Tomonori [1 ,3 ]
机构
[1] Natl Canc Ctr Hosp East, Dept Gastroenterol & Endoscopy, 6-5-1 Kashiwanoha, Kashiwa, Chiba 2778577, Japan
[2] Jikei Univ, Cooperat Grad Sch, Canc Med, Grad Sch Med, Tokyo, Japan
[3] Natl Canc Ctr Hosp East, Med Device Innovat Ctr, Kashiwa, Japan
[4] Natl Canc Ctr Hosp East, Dept Head & Neck Surg, Kashiwa, Japan
[5] Natl Canc Ctr Hosp East, Dept Radiat Oncol & Particle Therapy, Kashiwa, Japan
来源
HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK | 2023年 / 45卷 / 06期
关键词
artificial intelligence; blind spots; endoscopy; laryngeal; pharyngeal; SQUAMOUS-CELL CARCINOMA; CANCER; NECK; HEAD; SURVEILLANCE; HYPOPHARYNX;
D O I
10.1002/hed.27370
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
Background: The entire pharynx should be observed endoscopically to avoid missing pharyngeal lesions. An artificial intelligence (AI) model recognizing anatomical locations can help identify blind spots. We developed and evaluated an AI model classifying pharyngeal and laryngeal endoscopic locations. Methods: The AI model was trained using 5382 endoscopic images, categorized into 15 anatomical locations, and evaluated using an independent dataset of 1110 images. The main outcomes were model accuracy, precision, recall, and F1-score. Moreover, we investigated focused regions in the input images contributing to the model predictions using gradient-weighted class activation mapping (Grad-CAM) and Guided Grad-CAM. Results: Our AI model correctly classified pharyngeal and laryngeal images into 15 anatomical locations, with an accuracy of 93.3%. The weighted averages of precision, recall, and F1-score were 0.934, 0.933, and 0.933, respectively. Conclusion: Our AI model has an excellent performance determining pharyngeal and laryngeal anatomical locations, helping endoscopists notify of blind spots.
引用
收藏
页码:1549 / 1557
页数:9
相关论文
共 25 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Upper endoscopy photodocumentation quality evaluation with novel deep learning system [J].
Chang, Yuan-Yen ;
Yen, Hsu-Heng ;
Li, Pai-Chi ;
Chang, Ruey-Feng ;
Yang, Chia Wei ;
Chen, Yang-Yuan ;
Chang, Wen-Yen .
DIGESTIVE ENDOSCOPY, 2022, 34 (05) :994-1001
[3]   Comparing blind spots of unsedated ultrafine, sedated, and unsedated conventional gastroscopy with and without artificial intelligence: a prospective, single-blind, 3-parallel-group, randomized, single-center trial [J].
Chen, Di ;
Wu, Lianlian ;
Li, Yanxia ;
Zhang, Jun ;
Liu, Jun ;
Huang, Li ;
Jiang, Xiaoda ;
Huang, Xu ;
Mu, Ganggang ;
Hu, Shan ;
Hu, Xiao ;
Gong, Dexin ;
He, Xinqi ;
Yu, Honggang .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (02) :332-+
[4]   Development of artificial intelligence system for quality control of photo documentation in esophagogastroduodenoscopy [J].
Choi, Seong Ji ;
Khan, Mohammad Azam ;
Choi, Hyuk Soon ;
Choo, Jaegul ;
Lee, Jae Min ;
Kwon, Soonwook ;
Keum, Bora ;
Chun, Hoon Jai .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2022, 36 (01) :57-65
[5]   Surgical treatment for hypopharynx carcinoma: Feasibility, mortality, and results [J].
Eckel, HE ;
Staar, S ;
Volling, P ;
Sittel, C ;
Damm, M ;
Jungehuelsing, M .
OTOLARYNGOLOGY-HEAD AND NECK SURGERY, 2001, 124 (05) :561-569
[6]   Global Cancer Statistics [J].
Jemal, Ahmedin ;
Bray, Freddie ;
Center, Melissa M. ;
Ferlay, Jacques ;
Ward, Elizabeth ;
Forman, David .
CA-A CANCER JOURNAL FOR CLINICIANS, 2011, 61 (02) :69-90
[7]   Narrow band imaging for detecting superficial squamous cell carcinoma of the head and neck in patients with esophageal squamous cell carcinoma [J].
Katada, C. ;
Tanabe, S. ;
Koizumi, W. ;
Higuchi, K. ;
Sasaki, T. ;
Azuma, M. ;
Katada, N. ;
Masaki, T. ;
Nakayama, M. ;
Okamoto, M. ;
Muto, M. .
ENDOSCOPY, 2010, 42 (03) :185-190
[8]   Intelligent detection endoscopic assistant: An artificial intelligence-based system for monitoring blind spots during esophagogastroduodenoscopy in real-time [J].
Li, Yan-Dong ;
Zhu, Shu-Wen ;
Yu, Jiang-Ping ;
Ruan, Rong-Wei ;
Cui, Zhao ;
Li, Yi-Ting ;
Lv, Mei-Chao ;
Wang, Huo-Gen ;
Chen, Ming ;
Jin, Chao-Hui ;
Wang, Shi .
DIGESTIVE AND LIVER DISEASE, 2021, 53 (02) :216-223
[9]   Risk of second primary malignancy after esophagectomy for squamous cell carcinoma of the thoracic esophagus [J].
Matsubara, T ;
Yamada, K ;
Nakagawa, A .
JOURNAL OF CLINICAL ONCOLOGY, 2003, 21 (23) :4336-4341
[10]   Clinical impact of surveillance for head and neck cancer in patients with esophageal squamous cell carcinoma [J].
Morimoto, Hiroyuki ;
Yano, Tomonori ;
Yoda, Yusuke ;
Oono, Yasuhiro ;
Ikematsu, Hiroaki ;
Hayashi, Ryuichi ;
Ohtsu, Atsushi ;
Kaneko, Kazuhiro .
WORLD JOURNAL OF GASTROENTEROLOGY, 2017, 23 (06) :1051-1058