Hyperbolic Ricci soliton on warped product manifolds

被引:17
作者
Azami, Shahroud [1 ]
Fasihi-Ramandi, Ghodratallah [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
关键词
Warped product manifolds; Hyperbolic Ricci soliton; Concurrent vector fields; Robertson-Walker space-time; ROBERTSON-WALKER SPACETIMES; VECTOR-FIELDS; GRADIENT; CLASSIFICATION; GEOMETRY; SPACES;
D O I
10.2298/FIL2320843A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate hyperbolic Ricci soliton as the special solution of hyperbolic geometric flow on warped product manifolds. Then, especially, we study these manifolds admitting either a conformal vector field or a concurrent vector field. Also, the question that:" whether or not a hyperbolic soliton reduces to an Einstein manifold?" is considered and answered. Finally, we obtain some necessary conditions for generalized Robertson-Walker space-time to be a hyperbolic Ricci soliton.
引用
收藏
页码:6843 / 6853
页数:11
相关论文
共 36 条
[1]  
[Anonymous], 2001, REND MATH APPL
[2]  
Barari M., 2018, CANKAYA UNIV J SCI E, V15, P76
[3]  
Besse A.L., 1987, EINSTEIN MANIFOLDS, DOI 10.1007/978-3-540-74311-8
[4]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[5]  
Brendle S, 2014, J DIFFER GEOM, V97, P191
[6]   Locally Conformally Flat Lorentzian Gradient Ricci Solitons [J].
Brozos-Vazquez, M. ;
Garcia-Rio, E. ;
Gavino-Fernandez, S. .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) :1196-1212
[7]  
Cao HD, 2010, J DIFFER GEOM, V85, P175, DOI 10.4310/jdg/1287580963
[8]  
Chen B.-Y., 2017, Differential Geometry of Warped Product Manifolds and Submanifolds
[9]  
Chen BY, 2017, KRAGUJEV J MATH, V41, P239, DOI 10.5937/KgJMath1702239C
[10]   Non-existence of strictly monotone vector fields on certain Riemannian manifolds [J].
Cruz Neto, J. X. ;
Melo, I. D. ;
Sousa, P. A. .
ACTA MATHEMATICA HUNGARICA, 2015, 146 (01) :240-246