Adversarial co-training for semantic segmentation over medical images

被引:9
作者
Xie, Haoyu [1 ]
Fu, Chong [1 ,2 ,3 ]
Zheng, Xu [1 ]
Zheng, Yu [4 ]
Sham, Chiu-Wing [5 ]
Wang, Xingwei [1 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang 110819, Peoples R China
[3] Minist Educ, Engn Res Ctr Secur Technol Complex Network Syst, Shenyang, Peoples R China
[4] Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Peoples R China
[5] Univ Auckland, Sch Comp Sci, Auckland, New Zealand
关键词
Deep learning; Semi-supervised learning; Co-training; Adversarial example; Medical image segmentation;
D O I
10.1016/j.compbiomed.2023.106736
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background and objective: Abundant labeled data drives the model training for better performance, but collecting sufficient labels is still challenging. To alleviate the pressure of label collection, semi-supervised learning merges unlabeled data into training process. However, the joining of unlabeled data (e.g., data from different hospitals with different acquisition parameters) will change the original distribution. Such a distribution shift leads to a perturbation in the training process, potentially leading to a confirmation bias. In this paper, we investigate distribution shift and develop methods to increase the robustness of our models, with the goal of improving performance in semi-supervised semantic segmentation of medical images. We study distribution shift and increase model robustness to it, for improving practical performance in semi-supervised segmentation over medical images. Methods: To alleviate the issue of distribution shift, we introduce adversarial training into the co-training process. We simulate perturbations caused by the distribution shift via adversarial perturbations and introduce the adversarial perturbation to attack the supervised training to improve the robustness against the distribution shift. Benefiting from label guidance, supervised training does not collapse under adversarial attacks. For co-training, two sub-models are trained from two views (over two disjoint subsets of the dataset) to extract different kinds of knowledge independently. Co-training outperforms single-model by integrating both views of knowledge to avoid confirmation bias. Results: For practicality, we conduct extensive experiments on challenging medical datasets. Experimental results show desirable improvements to state-of-the-art counterparts (Yu and Wang, 2019; Peng et al., 2020; Perone et al., 2019). We achieve a DSC score of 87.37% with only 20% of labels on the ACDC dataset, almost same to using 100% of labels. On the SCGM dataset with more distribution shift, we achieve a DSC score of 78.65% with 6.5% of labels, surpassing 10.30% over Peng et al. (2020). Our evaluative results show superior robustness against distribution shifts in medical scenarios. Conclusion: Empirical results show the effectiveness of our work for handling distribution shift in medical scenarios.
引用
收藏
页数:10
相关论文
共 42 条
  • [1] SEEDED REGION GROWING
    ADAMS, R
    BISCHOF, L
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (06) : 641 - 647
  • [2] [Anonymous], 2013, P INT C LEARN REPR S
  • [3] [Anonymous], 2015, INT C LEARN REPR
  • [4] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [5] Bai W., MEDICAL IMAGE COMPUT
  • [6] Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
    Bernard, Olivier
    Lalande, Alain
    Zotti, Clement
    Cervenansky, Frederick
    Yang, Xin
    Heng, Pheng-Ann
    Cetin, Irem
    Lekadir, Karim
    Camara, Oscar
    Gonzalez Ballester, Miguel Angel
    Sanroma, Gerard
    Napel, Sandy
    Petersen, Steffen
    Tziritas, Georgios
    Grinias, Elias
    Khened, Mahendra
    Kollerathu, Varghese Alex
    Krishnamurthi, Ganapathy
    Rohe, Marc-Michel
    Pennec, Xavier
    Sermesant, Maxime
    Isensee, Fabian
    Jaeger, Paul
    Maier-Hein, Klaus H.
    Full, Peter M.
    Wolf, Ivo
    Engelhardt, Sandy
    Baumgartner, Christian F.
    Koch, Lisa M.
    Wolterink, Jelmer M.
    Isgum, Ivana
    Jang, Yeonggul
    Hong, Yoonmi
    Patravali, Jay
    Jain, Shubham
    Humbert, Olivier
    Jodoin, Pierre-Marc
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2514 - 2525
  • [7] Blum A., 1998, Proceedings of the Eleventh Annual Conference on Computational Learning Theory, P92, DOI 10.1145/279943.279962
  • [8] Chen Baixu, 2022, Advances in Neural Information Processing Systems
  • [9] Chen LC, 2016, Arxiv, DOI [arXiv:1412.7062, DOI 10.48550/ARXIV.1412.7062]
  • [10] Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis
    Cheplygina, Veronika
    de Bruijne, Marleen
    Pluim, Josien P. W.
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 54 : 280 - 296