Crosshatched nanofibre membranes for direct contact membrane distillation

被引:8
作者
Kim, Seungju [1 ]
Heath, Daniel E. [2 ]
Kentish, Sandra E. [1 ]
机构
[1] Univ Melbourne, Dept Chem Engn, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Dept Biomed Engn, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
PVDF; Electrospinning; Crosshatched nanofibres; Membrane distillation; Desalination; PVDF-HFP; INTERNAL CONCENTRATION POLARIZATION; HETEROGENEOUS NUCLEATION; PERFORMANCE;
D O I
10.1016/j.desal.2022.116277
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We develop crosshatched nanofibre membranes from hydrophobic polymer, poly(vinylidene fluoride-hexafluoro propylene) (PVDF-HFP) for direct contact membrane distillation. The membranes are fabricated with a unique crosshatched structure that is achieved by lamination of alternating layers of aligned electrospun nanofibres. This membrane structure significantly improves water flux by reducing the tortuosity of the membrane and increases mechanical strength compared to electrospun structures with a random fibre orientation. In addition, we fabricate the top layer of the membrane using electrospun fibres with a bead-on-strings morphology which further increases the hydrophobicity by increasing the surface roughness, minimising pore wetting. Herein, we illustrate that the crosshatched nanofibre membranes with the bead-on-strings structure exhibit great water flux and mechanically robust structures for continuous operations, resulting in a water flux of 65 kg m -2 h- 1 and 99.99 % rejection with steady performance over 100 h.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Alternative heating techniques in membrane distillation: A review [J].
Ahmed, Farah Ejaz ;
Lalia, Boor Singh ;
Hashaikeh, Raed ;
Hilal, Nidal .
DESALINATION, 2020, 496
[2]   The Effect of Inclination Angle and Reynolds Number on the Performance of a Direct Contact Membrane Distillation (DCMD) Process [J].
Alanezi, Adnan Alhathal ;
Safaei, Mohammad Reza ;
Goodarzi, Marjan ;
Elhenawy, Yasser .
ENERGIES, 2020, 13 (11)
[3]   Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres [J].
An, Alicia Kyoungjin ;
Lee, Eui-Jong ;
Guo, Jiaxin ;
Jeong, Sanghyun ;
Lee, Jung-Gil ;
Ghaffour, Noreddine .
SCIENTIFIC REPORTS, 2017, 7
[4]   Amphiphobic surface modification of electrospun nanofibrous membranes for anti-wetting performance in membrane distillation [J].
An, Xiaochan ;
Liu, Zhongyun ;
Hu, Yunxia .
DESALINATION, 2018, 432 :23-31
[5]   Pore wetting in membrane distillation: A comprehensive review [J].
Chamani, Hooman ;
Woloszyn, Joanne ;
Matsuura, Takeshi ;
Rana, Dipak ;
Lan, Christopher Q. .
PROGRESS IN MATERIALS SCIENCE, 2021, 122 (122)
[6]   Influence of the structural properties of poly(vinylidene fluoride) membranes on the heterogeneous nucleation rate of protein crystals [J].
Curcio, E ;
Fontananova, E ;
Di Profio, G ;
Drioli, E .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (25) :12438-12445
[7]   Supersaturation Control and Heterogeneous Nucleation in Membrane Crystallizers: Facts and Perspectives [J].
Di Profio, Gianluca ;
Curcio, Efrem ;
Drioli, Enrico .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (23) :11878-11889
[8]   Green-solvent-processed amphiphobic polyurethane nanofiber membranes with mechanically stable hierarchical structures for seawater desalination by membrane distillation [J].
Ding, Ruida ;
Chen, Siming ;
Xuan, Hongjie ;
Li, Bin ;
Rui, Yichuan .
DESALINATION, 2021, 516
[9]   A novel concentrated photovoltaic-driven membrane distillation hybrid system for the simultaneous production of electricity and potable water [J].
Elminshawy, Nabil A. S. ;
Gadalla, Mamdouh A. ;
Bassyouni, M. ;
El-Nahhas, Kamal ;
Elminshawy, Ahmed ;
Elhenawy, Y. .
RENEWABLE ENERGY, 2020, 162 :802-817
[10]   Membrane synthesis for membrane distillation: A review [J].
Eykens, L. ;
De Sitter, K. ;
Dotremont, C. ;
Pinoy, L. ;
Van der Bruggen, B. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 182 :36-51