High mass-loading CoO@NiCo-LDH//FeNiS flexible supercapacitor with high energy density and fast kinetics

被引:34
作者
Chen, Rongxin [1 ,2 ]
Cai, Xiaoyi [2 ]
He, Xinyu [2 ]
Hong, Xianyong [2 ]
Liu, Yunfan [1 ]
So, Jin-Kyu [3 ]
Wang, Benquan [2 ,3 ]
Zhou, Yang [4 ]
Cheng, Li [1 ]
Shen, Ze Xiang [2 ,3 ]
机构
[1] Chongqing Univ, Sch Elect Engn, Chongqing 400044, Peoples R China
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[3] Nanyang Technol Univ, Photon Inst, Ctr Disrupt Photon Technol, Sch Phys & Math Sci, Singapore 637371, Singapore
[4] Chongqing Univ, Analyt & Testing Ctr, Chongqing 400044, Peoples R China
基金
国家重点研发计划;
关键词
Flexible supercapacitors; Layered double hydroxide; High mass -loading; Core -shell structure; Density functional theory; Areal energy density; CORE-SHELL HETEROSTRUCTURE; HIGH-PERFORMANCE; ELECTRODE MATERIAL; NANOWIRE ARRAYS; COBALT SULFIDE; NANOCAGES; NANOSTRUCTURES; NANOFLAKES; HYDROXIDES; FRAMEWORKS;
D O I
10.1016/j.cej.2024.149736
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rapidly growing market of portable and wearable smart electronics has created strong interest in flexible electrode materials with high specific capacitance and fast charging/discharging properties. However, high massspecific capacitance active materials are often limited by the low areal mass -loading required. High areal capacity electrodes can make more efficient use of the limited internal space of these miniature devices by minimizing the volume and weight taken by current collectors and separators. Herein, a method is proposed to prepare a nickel-cobalt layered double hydroxide binder -free cathode on flexible carbon cloth with a mass loading of 20 mg cm -2. This core-shell hybrid structure prepared using a MOF self-sacrificing template, achieves a high energy density using thick electrodes while improving their slow kinetics by enhancing both the ion diffusion process and charge transfer dynamics. The areal capacitance reaches a staggering 4.42 mAh cm -2 (31.79 F cm -2) at a current density of 8 mA cm -2. Furthermore, a one-step hydrothermal method to prepare the FeNi-S anode (1.67 mAh cm -2, 2 mA cm -2) is proposed. Upon assembling with the gel electrolyte, this flexible device possesses an impressive energy density of 3.29 mW h cm -2 (3 mW cm -2). It can readily supply energy to watches, wireless e -paper, LEDs, and can be anticipated to be widely used in next -generation high-performance portable and wearable devices.
引用
收藏
页数:11
相关论文
共 62 条
[1]   Multistage interface engineered cobalt polysulfides core-shell nanostructures for dual energy storage devices and hydrogen evolution [J].
Cao, Feng ;
Shi, Xue-Rong ;
Wang, Peijie ;
Zhao, Wei ;
Huang, Mengru ;
Hu, Jing ;
Xu, Shusheng ;
Zhao, Guofeng .
VACUUM, 2023, 216
[2]   Oriented Transformation of Co-LDH into 2D/3D ZIF-67 to Achieve Co-N-C Hybrids for Efficient Overall Water Splitting [J].
Chen, Ziliang ;
Ha, Yuan ;
Jia, Huaxian ;
Yan, Xiaoxiao ;
Chen, Mao ;
Liu, Miao ;
Wu, Renbing .
ADVANCED ENERGY MATERIALS, 2019, 9 (19)
[3]   Excellent rate capability supercapacitor electrodes with highly hydroxyl ion adsorption capacity enabled by P-doped MnCo2O4 nanotube arrays [J].
Feng, Wanzhong ;
Pu, Wenhui ;
Zheng, Yanping ;
Wu, Hongyue ;
Li, Linlin ;
Wei, Xuan .
APPLIED SURFACE SCIENCE, 2022, 599
[4]   High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices [J].
Gan, Yi ;
Wang, Cong ;
Chen, Xu ;
Liang, Pei ;
Wan, Houzhao ;
Liu, Xiang ;
Tan, Qiuyang ;
Wu, Han ;
Rao, Han ;
Wang, Hanbin ;
Zhang, Jun ;
Wang, Yi ;
van Aken, Peter A. ;
Wang, Hao .
CHEMICAL ENGINEERING JOURNAL, 2020, 392
[5]   Nickel-cobalt (oxy)hydroxide battery-type supercapacitor electrode with high mass loading [J].
Gao, Mingyuan ;
Li, Yating ;
Yang, Jinhu ;
Liu, Yuexin ;
Liu, Ying ;
Zhang, Xiaoxiao ;
Wu, Shuanghao ;
Cai, Kefeng .
CHEMICAL ENGINEERING JOURNAL, 2022, 429
[6]   Significant Role of Al in Ternary Layered Double Hydroxides for Enhancing Electrochemical Performance of Flexible Asymmetric Supercapacitor [J].
Gao, Xiaorui ;
Liu, Ximeng ;
Wu, Dajun ;
Qian, Bin ;
Kou, Zongkui ;
Pan, Zhenghui ;
Pang, Yajun ;
Miao, Linqing ;
Wang, John .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (36)
[7]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[8]   Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications [J].
Gopi, Chandu V. V. Muralee ;
Vinodh, Rajangam ;
Sambasivam, Sangaraju ;
Obaidat, Ihab M. ;
Kim, Hee-Je .
JOURNAL OF ENERGY STORAGE, 2020, 27
[9]   Fabrication of hierarchical NiCo2S4@CoS2 nanostructures on highly conductive flexible carbon cloth substrate as a hybrid electrode material for supercapacitors with enhanced electrochemical performance [J].
Govindasamy, Mani ;
Shanthi, Selvaraj ;
Elaiyappillai, Elanthamilan ;
Wang, Sea-Fue ;
Johnson, Princy Merlin ;
Ikeda, Hiroya ;
Hayakawa, Yasuhiro ;
Ponnusamy, Suru ;
Muthamizhchelvan, Chellamuthu .
ELECTROCHIMICA ACTA, 2019, 293 :328-337
[10]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)