On the polymatroid Tutte polynomial

被引:0
|
作者
Guan, Xiaxia [1 ]
Yang, Weiling [1 ]
Jin, Xian'an [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
Interpolating behavior; Tutte polynomial; Polymatroid; High-order term; ROOT POLYTOPES; INVARIANT; KNOTS;
D O I
10.1016/j.jcta.2023.105798
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Tutte polynomial is a well-studied invariant of matroids. The polymatroid Tutte polynomial TP (x, y), introduced by Bernardi, Kalman, and Postnikov, is an extension of the classical Tutte polynomial from matroids to polymatroids P. In this paper, we first prove that TP (x, t) and TP (t, y) are interpolating for any fixed real number t >= 1, and then we study the coefficients of high-order terms in TP (x, 1) and TP (1, y). These results generalize results on the interior and exterior polynomials of hypergraphs. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A direct proof of well-definedness for the polymatroid Tutte polynomial
    Guan, Xiaxia
    Jin, Xian'an
    ADVANCES IN APPLIED MATHEMATICS, 2025, 163
  • [2] The Tutte polynomial
    Welsh, D
    RANDOM STRUCTURES & ALGORITHMS, 1999, 15 (3-4) : 210 - 228
  • [3] Fourientations and the Tutte polynomial
    Backman, Spencer
    Hopkins, Sam
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2017, 4
  • [4] Inapproximability of the Tutte polynomial
    Goldberg, Leslie Ann
    Jerrum, Mark
    INFORMATION AND COMPUTATION, 2008, 206 (07) : 908 - 929
  • [5] Inapproximability of the Tutte Polynomial
    Goldberg, Leslie Ann
    Jerrum, Mark
    STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 459 - 468
  • [6] On coefficients of the Tutte polynomial
    Leo, JW
    DISCRETE MATHEMATICS, 1998, 184 (1-3) : 121 - 135
  • [7] A categorification for the Tutte polynomial
    Jasso-Hernandez, Edna F.
    Rong, Yongwu
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 2031 - 2049
  • [8] Ehrhart polynomial and arithmetic Tutte polynomial
    D'Adderio, Michele
    Moci, Luca
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (07) : 1479 - 1483
  • [9] A Tutte Polynomial for Maps
    Goodall, Andrew
    Krajewski, Thomas
    Regts, Guus
    Vena, Lluis
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (06): : 913 - 945
  • [10] Permutation Tutte polynomial
    Beke, Csongor
    Csaji, Gergely Kal
    Csikvari, Peter
    Pituk, Sara
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120