Predicting individual behavior from brain imaging data using machine learning is a rapidly growing field in neuroscience. Functional connectivity (FC), which captures interactions between different brain regions, contains valuable information about the organization of the brain and is considered a crucial feature for modeling human behavior. Graph convolutional networks (GCN) have proven to be a powerful tool for extracting graph structure features and have shown promising results in various FC-based classification tasks, such as disease classification and prognosis prediction. Despite this success, few behavior prediction models currently exist based on GCN, and their performance is not satisfactory. To address this gap, a new model called the Multi-Scale FC-based Multi-Order GCN (MSFC-MO-GCN) was proposed in this paper. The model considers the hierarchical structure of the brain system and utilizes FCs inferred from multiple spatial scales as input to comprehensively characterize individual brain organization. To enhance the feature learning ability of GCN, a multi-order graph convolutional layer is incorporated, which uses multi-order neighbors to guide message passing and learns high-order graph information of nodal connections. Additionally, an inter-subject contrast constraint is designed to control the potential information redundancy of FCs among different spatial scales during the feature learning process. Experimental evaluation were conducted on the publicly available dataset from human connectome project. A total of 805 healthy subjects were included and 5 representative behavior metrics were used. The experimental results show that our proposed method outperforms the existing behavior prediction models in all behavior prediction tasks.
引用
收藏
页码:548 / 558
页数:11
相关论文
共 66 条
[1]
Abu-El-Haifa S, 2019, PR MACH LEARN RES, V97
[2]
Akleman E., 2020, Computer, V53, P1, DOI [10.1109/MC.2020.3004171, DOI 10.1109/MC.2020.3004171]
机构:
Univ Groningen, Univ Med Ctr Groningen, Ctr Human Movement Sci, NL-9713 AV Groningen, NetherlandsUniv Groningen, Univ Med Ctr Groningen, Ctr Human Movement Sci, NL-9713 AV Groningen, Netherlands
Borghuis, Jan
Hof, At L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Groningen, Univ Med Ctr Groningen, Ctr Human Movement Sci, NL-9713 AV Groningen, NetherlandsUniv Groningen, Univ Med Ctr Groningen, Ctr Human Movement Sci, NL-9713 AV Groningen, Netherlands
Hof, At L.
Lemmink, Koen A. P. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Groningen, Univ Med Ctr Groningen, Ctr Human Movement Sci, NL-9713 AV Groningen, Netherlands
Hanze Univ Appl Sci, Sch Sports Studies, Groningen, NetherlandsUniv Groningen, Univ Med Ctr Groningen, Ctr Human Movement Sci, NL-9713 AV Groningen, Netherlands
机构:
Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
Beijing Normal Univ, IDG McGovern Inst Brain Res, Beijing 100875, Peoples R China
Univ Penn, Perelman Sch Med, Dept Psychiat, Philadelphia, PA 19104 USABeijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
Cui, Zaixu
Gong, Gaolang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
Beijing Normal Univ, IDG McGovern Inst Brain Res, Beijing 100875, Peoples R China
Beijing Normal Univ, Beijing Key Lab Brain Imaging & Connect, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
机构:
Univ Groningen, Univ Med Ctr Groningen, Ctr Human Movement Sci, NL-9713 AV Groningen, NetherlandsUniv Groningen, Univ Med Ctr Groningen, Ctr Human Movement Sci, NL-9713 AV Groningen, Netherlands
Borghuis, Jan
Hof, At L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Groningen, Univ Med Ctr Groningen, Ctr Human Movement Sci, NL-9713 AV Groningen, NetherlandsUniv Groningen, Univ Med Ctr Groningen, Ctr Human Movement Sci, NL-9713 AV Groningen, Netherlands
Hof, At L.
Lemmink, Koen A. P. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Groningen, Univ Med Ctr Groningen, Ctr Human Movement Sci, NL-9713 AV Groningen, Netherlands
Hanze Univ Appl Sci, Sch Sports Studies, Groningen, NetherlandsUniv Groningen, Univ Med Ctr Groningen, Ctr Human Movement Sci, NL-9713 AV Groningen, Netherlands
机构:
Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
Beijing Normal Univ, IDG McGovern Inst Brain Res, Beijing 100875, Peoples R China
Univ Penn, Perelman Sch Med, Dept Psychiat, Philadelphia, PA 19104 USABeijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
Cui, Zaixu
Gong, Gaolang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
Beijing Normal Univ, IDG McGovern Inst Brain Res, Beijing 100875, Peoples R China
Beijing Normal Univ, Beijing Key Lab Brain Imaging & Connect, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China