Unsupervised Tensor Based Feature Extraction From Multivariate Time Series

被引:0
|
作者
Matsue, Kiyotaka [1 ,2 ]
Sugiyama, Mahito [1 ,3 ]
机构
[1] Natl Inst Informat, Tokyo 1018430, Japan
[2] Toshiba Infrastructure Syst & Solut Corp, Kawasaki, Kanagawa 2120013, Japan
[3] Grad Univ Adv Studies, Dept Adv Studies, SOKENDAI, Hayama, Kanagawa 2400193, Japan
关键词
Feature extraction; multivariate time series; tensor decomposition; Tucker decomposition; clustering; outlier detection; unsupervised learning; APPROXIMATION; ALGORITHMS;
D O I
10.1109/ACCESS.2023.3326073
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Clustering and outlier detection for multivariate time series are essential tasks in data mining fields and many algorithms have been developed for this purpose. However, these tasks remain challenging because both time-wise and variable-wise associations should be taken into account to treat multivariate time series appropriately. We propose a tensor based feature extraction method called UFEKT, which focuses on subsequences to account for the time-wise association and constructs a feature vector for each subsequence by applying tensor decomposition to account for the variable-wise association. This method is simple and can be used as an effective means of preprocessing for clustering and outlier detection algorithms. We show empirically that UFEKT leads to superior performance on various popularly used clustering algorithms such as K -means and DBSCAN and outlier detection algorithm such as the kappa -nearest neighbor and LOF.
引用
收藏
页码:116277 / 116295
页数:19
相关论文
共 50 条
  • [41] Feature subset selection and feature ranking for multivariate time series
    Yoon, H
    Yang, KY
    Shahabi, C
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (09) : 1186 - 1198
  • [42] Kernel-Based Feature Extraction for Time Series Clustering
    Liu, Yuhang
    Zhang, Yi
    Cao, Yang
    Zhu, Ye
    Zaidi, Nayyar
    Ranaweera, Chathu
    Li, Gang
    Zhu, Qingyi
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 276 - 283
  • [43] Time series forecasting based on wavelet decomposition and feature extraction
    Liu, Tianhong
    Wei, Haikun
    Zhang, Chi
    Zhang, Kanjian
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 : S183 - S195
  • [44] A window-based time series feature extraction method
    Katircioglu-Ozturk, Deniz
    Guvenir, H. Altay
    Ravens, Ursula
    Baykal, Nazife
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 : 466 - 486
  • [45] Time series forecasting based on wavelet decomposition and feature extraction
    Tianhong Liu
    Haikun Wei
    Chi Zhang
    Kanjian Zhang
    Neural Computing and Applications, 2017, 28 : 183 - 195
  • [46] Unsupervised feature extraction based on uncorrelated approach
    Jayashree
    Shiva Prakash, T.
    Venugopal, K.R.
    Information Sciences, 2024, 666
  • [47] Unsupervised feature extraction based on uncorrelated approach
    Jayashree
    Prakash, Shiva T.
    Venugopal, K. R.
    INFORMATION SCIENCES, 2024, 666
  • [48] Learning from Time Series: Supervised Aggregative Feature Extraction
    Schirru, Andrea
    Susto, Gian Antonio
    Pampuri, Simone
    McLoone, Sean
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 5254 - 5259
  • [49] Application note: TDbasedUFE and TDbasedUFEadv: bioconductor packages to perform tensor decomposition based unsupervised feature extraction
    Taguchi, Y-H
    Turki, Turki
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6
  • [50] Tensor-Decomposition-Based Unsupervised Feature Extraction in Single-Cell Multiomics Data Analysis
    Taguchi, Y-h
    Turki, Turki
    GENES, 2021, 12 (09)