Applications and Prospects of CRISPR/Cas9-Mediated Base Editing in Plant Breeding

被引:18
作者
Li, Yizhen [1 ]
Liang, Jing [1 ]
Deng, Bufang [1 ]
Jiang, Yingli [1 ]
Zhu, Jingyan [1 ]
Chen, Like [1 ]
Li, Min [1 ]
Li, Juan [2 ]
机构
[1] Anhui Agr Univ, Coll Agron, Hefei 230036, Peoples R China
[2] Anhui Acad Agr Sci, Rice Res Inst, Key Lab Rice Genet Breeding Anhui Prov, Hefei 230031, Peoples R China
基金
中国国家自然科学基金;
关键词
base editing; CRISPR; Cas9; plant; genome editing; crop improvement; BLAST RESISTANCE; POINT MUTATIONS; GLYCOSYLASE UNG; GENOMIC DNA; TARGET BASE; RICE; GENE; REPAIR; WHEAT; BIOSYNTHESIS;
D O I
10.3390/cimb45020059
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 system (Cas9) has been used at length to optimize multiple aspects of germplasm resources. However, large-scale genomic research has indicated that novel variations in crop plants are attributed to single-nucleotide polymorphisms (SNPs). Therefore, substituting single bases into a plant genome may produce desirable traits. Gene editing by CRISPR/Cas9 techniques frequently results in insertions-deletions (indels). Base editing allows precise single-nucleotide changes in the genome in the absence of double-strand breaks (DSBs) and donor repair templates (DRTs). Therefore, BEs have provided a new way of thinking about genome editing, and base editing techniques are currently being utilized to edit the genomes of many different organisms. As traditional breeding techniques and modern molecular breeding technologies complement each other, various genome editing technologies have emerged. How to realize the greater potential of BE applications is the question we need to consider. Here, we explain various base editings such as CBEs, ABEs, and CGBEs. In addition, the latest applications of base editing technologies in agriculture are summarized, including crop yield, quality, disease, and herbicide resistance. Finally, the challenges and future prospects of base editing technologies are presented. The aim is to provide a comprehensive overview of the application of BE in crop breeding to further improve BE and make the most of its value.
引用
收藏
页码:918 / 935
页数:18
相关论文
共 188 条
[1]   Posttranslational Modification of Waxy to Genetically Improve Starch Quality in Rice Grain [J].
Adegoke, Tosin Victor ;
Wang, Yifeng ;
Chen, Lijuan ;
Wang, Huimei ;
Liu, Wanning ;
Liu, Xingyong ;
Cheng, Yi-Chen ;
Tong, Xiaohong ;
Ying, Jiezheng ;
Zhang, Jian .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (09)
[2]   Emerging evidence of plant domestication as a landscape-level process [J].
Allaby, Robin G. ;
Stevens, Chris J. ;
Kistler, Logan ;
Fuller, Dorian Q. .
TRENDS IN ECOLOGY & EVOLUTION, 2022, 37 (03) :268-279
[3]   Optimized breeding strategies to harness genetic resources with different performance levels [J].
Allier, Antoine ;
Teyssedre, Simon ;
Lehermeier, Christina ;
Moreau, Laurence ;
Charcosset, Alain .
BMC GENOMICS, 2020, 21 (01) :1DUMM
[4]   Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing [J].
Anzalone, Andrew, V ;
Gao, Xin D. ;
Podracky, Christopher J. ;
Nelson, Andrew T. ;
Koblan, Luke W. ;
Raguram, Aditya ;
Levy, Jonathan M. ;
Mercer, Jaron A. M. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2022, 40 (05) :731-+
[5]   Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J].
Anzalone, Andrew V. ;
Koblan, Luke W. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :824-844
[6]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[7]   Shifting the limits in wheat research and breeding using a fully annotated reference genome [J].
Appels, Rudi ;
Eversole, Kellye ;
Feuillet, Catherine ;
Keller, Beat ;
Rogers, Jane ;
Stein, Nils ;
Pozniak, Curtis J. ;
Choulet, Frederic ;
Distelfeld, Assaf ;
Poland, Jesse ;
Ronen, Gil ;
Sharpe, Andrew G. ;
Pozniak, Curtis ;
Barad, Omer ;
Baruch, Kobi ;
Keeble-Gagnere, Gabriel ;
Mascher, Martin ;
Ben-Zvi, Gil ;
Josselin, Ambre-Aurore ;
Himmelbach, Axel ;
Balfourier, Francois ;
Gutierrez-Gonzalez, Juan ;
Hayden, Matthew ;
Koh, ChuShin ;
Muehlbauer, Gary ;
Pasam, Raj K. ;
Paux, Etienne ;
Rigault, Philippe ;
Tibbits, Josquin ;
Tiwari, Vijay ;
Spannagl, Manuel ;
Lang, Daniel ;
Gundlach, Heidrun ;
Haberer, Georg ;
Mayer, Klaus F. X. ;
Ormanbekova, Danara ;
Prade, Verena ;
Simkova, Hana ;
Wicker, Thomas ;
Swarbreck, David ;
Rimbert, Helene ;
Felder, Marius ;
Guilhot, Nicolas ;
Kaithakottil, Gemy ;
Keilwagen, Jens ;
Leroy, Philippe ;
Lux, Thomas ;
Twardziok, Sven ;
Venturini, Luca ;
Juhasz, Angela .
SCIENCE, 2018, 361 (6403) :661-+
[8]   Towards social acceptance of plant breeding by genome editing [J].
Araki, Motoko ;
Ishii, Tetsuya .
TRENDS IN PLANT SCIENCE, 2015, 20 (03) :145-149
[9]   Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice [J].
Asano, Kenji ;
Hirano, Ko ;
Ueguchi-Tanaka, Miyako ;
Angeles-Shim, Rosalyn B. ;
Komura, Toshiro ;
Satoh, Hikaru ;
Kitano, Hidemi ;
Matsuoka, Makoto ;
Ashikari, Motoyuki .
MOLECULAR GENETICS AND GENOMICS, 2009, 281 (02) :223-231
[10]   Cytokinin oxidase regulates rice grain production [J].
Ashikari, M ;
Sakakibara, H ;
Lin, SY ;
Yamamoto, T ;
Takashi, T ;
Nishimura, A ;
Angeles, ER ;
Qian, Q ;
Kitano, H ;
Matsuoka, M .
SCIENCE, 2005, 309 (5735) :741-745