Coupling from the past for exponentially ergodic one-dimensional probabilistic cellular automata

被引:0
|
作者
Berard, Jean [1 ,2 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 rue Rene Descartes, F-67000 Strasbourg, France
[2] CNRS, 7 rue Rene Descartes, F-67000 Strasbourg, France
来源
关键词
coupling from the past; cellular automata; FINITARY CODINGS;
D O I
10.1214/23-EJP1013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For every exponentially ergodic one-dimensional probabilistic cellular automaton with positive rates, we construct a locally defined coupling-from-the-past flow whose coalescence time has a finite exponential moment. This construction leads to a finite-size necessary and sufficient condition for exponential ergodicity of one-dimensional cellular automata. As a corollary, we prove that every sufficiently small perturbation of an exponentially ergodic one-dimensional cellular automaton is exponentially ergodic.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Universal One-dimensional Cellular Automata Derived from Turing Machines
    Martinez, Sergio J.
    Mendoza, Ivan M.
    Martinez, Genaro J.
    Ninagawa, Shigeru
    INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2019, 14 (02) : 121 - 138
  • [32] Universal one-dimensional cellular automata derived from turing machines
    Martínez, Sergio J.
    Mendoza, Iván M.
    Martínez, Genaro J.
    Ninagawa, Shigeru
    International Journal of Unconventional Computing, 2019, 14 (02): : 121 - 138
  • [33] Symmetry and Entropy of One-Dimensional Legal Cellular Automata
    Yamasaki, Kazuhito
    Nanjo, Kazuyoshi Z.
    Chiba, Satoshi
    COMPLEX SYSTEMS, 2012, 20 (04): : 351 - 361
  • [34] Entanglement dynamics in one-dimensional quantum cellular automata
    Brennen, GK
    Williams, JE
    PHYSICAL REVIEW A, 2003, 68 (04): : 1 - 042311
  • [35] The intrinsic universality problem of one-dimensional cellular automata
    Ollinger, N
    STACS 2003, PROCEEDINGS, 2003, 2607 : 632 - 641
  • [36] Ranks of finite semigroups of one-dimensional cellular automata
    Castillo-Ramirez, Alonso
    Gadouleau, Maximilien
    SEMIGROUP FORUM, 2016, 93 (02) : 347 - 362
  • [37] PERIODICITY IN ONE-DIMENSIONAL FINITE LINEAR CELLULAR AUTOMATA
    TADAKI, S
    MATSUFUJI, S
    PROGRESS OF THEORETICAL PHYSICS, 1993, 89 (02): : 325 - 331
  • [38] Spectral properties of reversible one-dimensional cellular automata
    Mora, JCST
    Vergara, SVC
    Martinez, GJ
    McIntosh, HV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (03): : 379 - 395
  • [39] Defect particle kinematics in one-dimensional cellular automata
    Pivato, Marcus
    THEORETICAL COMPUTER SCIENCE, 2007, 377 (1-3) : 205 - 228
  • [40] Solving the parity problem in one-dimensional cellular automata
    Betel, Heather
    de Oliveira, Pedro P. B.
    Flocchini, Paola
    NATURAL COMPUTING, 2013, 12 (03) : 323 - 337