A modified Picone-type identity and the uniqueness of positive symmetric solutions for a prescribed mean curvature problem

被引:0
作者
Lee, Yong-Hoon [2 ]
Yang, Rui [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
[2] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
关键词
uniqueness; mean curvature; symmetry; positive solutions; INDEFINITE PROBLEM; RADIAL SOLUTIONS; EQUATION; THEOREMS;
D O I
10.1515/ans-2023-0107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the uniqueness of positive symmetric solutions of the following mean curvature problem in Euclidean space: {{u'/root 1+divided by u'divided by(2)}(') +h(x)f(u) = 0, -1 < x < 1, {u(-1) = u(1) = 0,where h is an element of C-1([-1,1]) and f is an element of C-1([0, infinity); [0, infinity)). Under suitable conditions on h and monotone condition on f(s)/s, by introducing a modified Picone-type identity, we prove that the problem has at most one positive symmetric solution.
引用
收藏
页数:11
相关论文
共 33 条
[2]  
Bereanu C, 2009, P AM MATH SOC, V137, P161
[3]  
Bernstein S., 1914, COMMUN SOC MATH KHAR, V15, P38
[4]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[5]   Classical and non-classical solutions of a prescribed curvature equation [J].
Bonheure, Denis ;
Habets, Patrick ;
Obersnel, Franco ;
Omari, Pierpaolo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) :208-237
[6]   Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity [J].
Brubaker, Nicholas D. ;
Pelesko, John A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) :5086-5102
[7]   Non-linear effects on canonical MEMS models [J].
Brubaker, Nicholas D. ;
Pelesko, John A. .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2011, 22 :455-470
[8]   Steady state solutions of a bi-stable quasi-linear equation with saturating flux [J].
Burns, M. ;
Grinfeld, M. .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2011, 22 :317-331
[9]   A PRESCRIBED MEAN-CURVATURE PROBLEM ON DOMAINS WITHOUT RADIAL SYMMETRY [J].
COFFMAN, CV ;
ZIEMER, WK .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (04) :982-990
[10]  
De Giorgi E., 1965, ANN SCUOLA NORM-SCI, V19, P79